Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction
Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-02, Vol.80 (3), p.3025-3041 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3041 |
---|---|
container_issue | 3 |
container_start_page | 3025 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Wang, Guangjin Wang, Yuanying Xu, Fuyong Zhang, Yongsheng Liu, Peiyu |
description | Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted triplets inaccurate. In this paper, we propose a syntactic and semantic dual-enhanced bidirectional network (SSBN) for ASTE task. By constructing word dependencies as a graph and embedding them into features to capture syntactic information more effectively in bidirectional network. Furthermore, we design a pruning strategy that uses part-of-speech information to alleviate the problem of identifying potential aspects and opinions from a large number of spans. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate the effectiveness of the SSBN model. |
doi_str_mv | 10.1007/s11227-023-05573-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2917581914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917581914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a91bade353fa1d7f796c2fed5602b994dcfc3cf4ac80fdb486439547348fff653</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTTPycxSii8ouFDXIZOHTp1mxiSl9t-bdgR3bu6L8x0uB4BLgq8JxvImEUKpRJgyhIWQDG2PwIzsB8xrfgxmuKEY1YLTU3CW0gpjzJlkM9C-7ELWJncG6mBhcmsd9ovd6B658KGDcRa2ne2iK6oh6B4Gl7dD_IR-iFCnsdwLV6h1KTDHbuxdhu47R30gzsGJ131yF799Dt7u714Xj2j5_PC0uF0iQyXOSDek1dYxwbwmVnrZVIZ6Z0WFads03BpvmPFcmxp72_K64qwRXDJee-8rwebgavId4_C1cSmr1bCJ5eGkaEOkqElDeFHRSWXikFJ0Xo2xW-u4UwSrfZZqylKVLNUhS7UtEJugVMTh3cU_63-oHyX3emI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917581914</pqid></control><display><type>article</type><title>Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction</title><source>SpringerNature Journals</source><creator>Wang, Guangjin ; Wang, Yuanying ; Xu, Fuyong ; Zhang, Yongsheng ; Liu, Peiyu</creator><creatorcontrib>Wang, Guangjin ; Wang, Yuanying ; Xu, Fuyong ; Zhang, Yongsheng ; Liu, Peiyu</creatorcontrib><description>Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted triplets inaccurate. In this paper, we propose a syntactic and semantic dual-enhanced bidirectional network (SSBN) for ASTE task. By constructing word dependencies as a graph and embedding them into features to capture syntactic information more effectively in bidirectional network. Furthermore, we design a pruning strategy that uses part-of-speech information to alleviate the problem of identifying potential aspects and opinions from a large number of spans. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate the effectiveness of the SSBN model.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-023-05573-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Compilers ; Computer Science ; Interpreters ; Processor Architectures ; Programming Languages ; Semantics</subject><ispartof>The Journal of supercomputing, 2024-02, Vol.80 (3), p.3025-3041</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a91bade353fa1d7f796c2fed5602b994dcfc3cf4ac80fdb486439547348fff653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-023-05573-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-023-05573-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Guangjin</creatorcontrib><creatorcontrib>Wang, Yuanying</creatorcontrib><creatorcontrib>Xu, Fuyong</creatorcontrib><creatorcontrib>Zhang, Yongsheng</creatorcontrib><creatorcontrib>Liu, Peiyu</creatorcontrib><title>Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted triplets inaccurate. In this paper, we propose a syntactic and semantic dual-enhanced bidirectional network (SSBN) for ASTE task. By constructing word dependencies as a graph and embedding them into features to capture syntactic information more effectively in bidirectional network. Furthermore, we design a pruning strategy that uses part-of-speech information to alleviate the problem of identifying potential aspects and opinions from a large number of spans. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate the effectiveness of the SSBN model.</description><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Semantics</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTTPycxSii8ouFDXIZOHTp1mxiSl9t-bdgR3bu6L8x0uB4BLgq8JxvImEUKpRJgyhIWQDG2PwIzsB8xrfgxmuKEY1YLTU3CW0gpjzJlkM9C-7ELWJncG6mBhcmsd9ovd6B658KGDcRa2ne2iK6oh6B4Gl7dD_IR-iFCnsdwLV6h1KTDHbuxdhu47R30gzsGJ131yF799Dt7u714Xj2j5_PC0uF0iQyXOSDek1dYxwbwmVnrZVIZ6Z0WFads03BpvmPFcmxp72_K64qwRXDJee-8rwebgavId4_C1cSmr1bCJ5eGkaEOkqElDeFHRSWXikFJ0Xo2xW-u4UwSrfZZqylKVLNUhS7UtEJugVMTh3cU_63-oHyX3emI</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wang, Guangjin</creator><creator>Wang, Yuanying</creator><creator>Xu, Fuyong</creator><creator>Zhang, Yongsheng</creator><creator>Liu, Peiyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction</title><author>Wang, Guangjin ; Wang, Yuanying ; Xu, Fuyong ; Zhang, Yongsheng ; Liu, Peiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a91bade353fa1d7f796c2fed5602b994dcfc3cf4ac80fdb486439547348fff653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guangjin</creatorcontrib><creatorcontrib>Wang, Yuanying</creatorcontrib><creatorcontrib>Xu, Fuyong</creatorcontrib><creatorcontrib>Zhang, Yongsheng</creatorcontrib><creatorcontrib>Liu, Peiyu</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guangjin</au><au>Wang, Yuanying</au><au>Xu, Fuyong</au><au>Zhang, Yongsheng</au><au>Liu, Peiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>80</volume><issue>3</issue><spage>3025</spage><epage>3041</epage><pages>3025-3041</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted triplets inaccurate. In this paper, we propose a syntactic and semantic dual-enhanced bidirectional network (SSBN) for ASTE task. By constructing word dependencies as a graph and embedding them into features to capture syntactic information more effectively in bidirectional network. Furthermore, we design a pruning strategy that uses part-of-speech information to alleviate the problem of identifying potential aspects and opinions from a large number of spans. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate the effectiveness of the SSBN model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-023-05573-w</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-02, Vol.80 (3), p.3025-3041 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2917581914 |
source | SpringerNature Journals |
subjects | Compilers Computer Science Interpreters Processor Architectures Programming Languages Semantics |
title | Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntactic%20and%20semantic%20dual-enhanced%20bidirectional%20network%20for%20aspect%20sentiment%20triplet%20extraction&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wang,%20Guangjin&rft.date=2024-02-01&rft.volume=80&rft.issue=3&rft.spage=3025&rft.epage=3041&rft.pages=3025-3041&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-023-05573-w&rft_dat=%3Cproquest_cross%3E2917581914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917581914&rft_id=info:pmid/&rfr_iscdi=true |