Syntactic and semantic dual-enhanced bidirectional network for aspect sentiment triplet extraction
Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-02, Vol.80 (3), p.3025-3041 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Span-level method achieves competitive results in Aspect Sentiment Triplet Extraction (ASTE) by enumerating all possible spans. However, previous span-level methods fail to exploit syntactic information to identify the correspondence between aspect terms and opinion terms, which makes the extracted triplets inaccurate. In this paper, we propose a syntactic and semantic dual-enhanced bidirectional network (SSBN) for ASTE task. By constructing word dependencies as a graph and embedding them into features to capture syntactic information more effectively in bidirectional network. Furthermore, we design a pruning strategy that uses part-of-speech information to alleviate the problem of identifying potential aspects and opinions from a large number of spans. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate the effectiveness of the SSBN model. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-023-05573-w |