Synthesis of nano-hydroxyapatite using emulsion, pyrolysis, combustion, and sonochemical methods and biogenic sources: a review

Hydroxyapatite (HAp) is comparable to materials in bone because its chemical components are similar to those contained in animal bone, and thus, its bioactive and biocompatible properties are similar. There are applications for HAp and relevant calcium phosphate in the medical and industrial sectors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-01, Vol.14 (5), p.3548-3559
Hauptverfasser: Alam, Md. Kawcher, Sahadat Hossain, Md, Kawsar, Md, Bahadur, Newaz Mohammed, Ahmed, Samina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroxyapatite (HAp) is comparable to materials in bone because its chemical components are similar to those contained in animal bone, and thus, its bioactive and biocompatible properties are similar. There are applications for HAp and relevant calcium phosphate in the medical and industrial sectors, and due to the rising demand for HAp nanoparticles, considerable work has been performed to develop a variety of synthetic pathways that incorporate scientifically and practically novel aspects. Numerous studies have been conducted to examine how changes in reaction parameters will successfully influence crucial HAp features. HAp can also be synthesized from biogenic sources such as HAp-rich fish scales or animal bones as an alternative to chemical precursors. Various preparation techniques produce crystals with varying sizes, but it has been found that nano-sized HAp exhibits a greater number of bioactive properties as compared to micron-sized HAp. Rather than considering conventional methods, this review focuses on alternative approaches such as emulsion, pyrolysis, combustion, and sonochemical methods along with waste bio-sources (biogenic sources) to obtain HAp. We summarize the currently accessible information pertaining to each synthesis process, while also focusing on their benefits and drawbacks. Different synthesis methods (emulsion, pyrolysis, combustion, and sonochemical) of calcium phosphates and exploration of biogenic sources.
ISSN:2046-2069
2046-2069
DOI:10.1039/d3ra07559a