A note on Bernoulli polynomials and solitons

The dependence on time of the moments of the one-soliton KdV solutions is given by Bernoulli polynomials. Namely, we prove the formula expressing the moments of the one-soliton function sech 2 (x-t) in terms of the Bernoulli polynomials Bn(x). We also provide an alternative short proof to the Grosse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2007-01, Vol.14 (2), p.174-178
1. Verfasser: Boyadzhiev, Khristo N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dependence on time of the moments of the one-soliton KdV solutions is given by Bernoulli polynomials. Namely, we prove the formula expressing the moments of the one-soliton function sech 2 (x-t) in terms of the Bernoulli polynomials Bn(x). We also provide an alternative short proof to the Grosset-Veselov formula connecting the one-soliton to the Bernoulli numbers (D = d/dx) published recently in this journal.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.2991/jnmp.2007.14.2.3