The Structure of Gelfand-Levitan-Marchenko Type Equations for Delsarte Transmutation Operators of Linear Multi-Dimensional Differential Operators and Operator Pencils. Part 2

The differential-geometric and topological structure of Delsarte transmutation operators their associated Gelfand-Levitan-Marchenko type equations are studied making use of the de Rham-Hodge-Skrypnik differential complex. The relationships with spectral theory and special Berezansky type congruence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2005, Vol.12 (3), p.381-408
Hauptverfasser: Golenia, Jolanta, Prykarpatsky, Anatolij K, Prykarpatsky, Yarema A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The differential-geometric and topological structure of Delsarte transmutation operators their associated Gelfand-Levitan-Marchenko type equations are studied making use of the de Rham-Hodge-Skrypnik differential complex. The relationships with spectral theory and special Berezansky type congruence properties of Delsarte transmuted operators are stated. Some applications to multi-dimensional differential operators are done including the three-dimensional Laplace operator and the two-dimensional classical Dirac operator and its multi-dimensional affine extension, related with self-dual Yang-Mills equations. The soliton like solutions to the related set of nonlinear dynamical systems are discussed.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.2991/jnmp.2005.12.3.5