10-Commutators, 13-commutators and odd derivations

The anti-symmetric sum S N (X 1 ,..., X N ) of N! compositions of N vector fields X 1 ,..., X N ∈ V ect(n) in all possible order is said to be a N-commutator if S N (X 1 ,..., X N ) ∈ Vect(n) for any X 1 ,...,X N ∈ Vect(n) and does not vanish for some vector fields X 1 ,...,X N . We construct 10- an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2008, Vol.15 (1), p.87-103
1. Verfasser: Dzhumadil'daev, Askar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The anti-symmetric sum S N (X 1 ,..., X N ) of N! compositions of N vector fields X 1 ,..., X N ∈ V ect(n) in all possible order is said to be a N-commutator if S N (X 1 ,..., X N ) ∈ Vect(n) for any X 1 ,...,X N ∈ Vect(n) and does not vanish for some vector fields X 1 ,...,X N . We construct 10- and 13-commutators on Vect 0 (3) and 10-commutator on the space of divergence-free vector fields Vect 0 (3). We show that there are no other N-commutators on Vect(3) except for 2-, 10- and 13-commutators, and no other N-commutators on the Lie algebra of divergence-free vector fields V ect 0 (3) except for 2-, 10-commutators. These constructions are based on calculation of powers of odd derivations.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.2991/jnmp.2008.15.1.7