10-Commutators, 13-commutators and odd derivations
The anti-symmetric sum S N (X 1 ,..., X N ) of N! compositions of N vector fields X 1 ,..., X N ∈ V ect(n) in all possible order is said to be a N-commutator if S N (X 1 ,..., X N ) ∈ Vect(n) for any X 1 ,...,X N ∈ Vect(n) and does not vanish for some vector fields X 1 ,...,X N . We construct 10- an...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2008, Vol.15 (1), p.87-103 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The anti-symmetric sum S
N
(X
1
,..., X
N
) of N! compositions of N vector fields X
1
,..., X
N
∈ V ect(n) in all possible order is said to be a N-commutator if S
N
(X
1
,..., X
N
) ∈ Vect(n) for any X
1
,...,X
N
∈ Vect(n) and does not vanish for some vector fields X
1
,...,X
N
. We construct 10- and 13-commutators on Vect
0
(3) and 10-commutator on the space of divergence-free vector fields Vect
0
(3). We show that there are no other N-commutators on Vect(3) except for 2-, 10- and 13-commutators, and no other N-commutators on the Lie algebra of divergence-free vector fields V ect
0
(3) except for 2-, 10-commutators. These constructions are based on calculation of powers of odd derivations. |
---|---|
ISSN: | 1402-9251 1776-0852 1776-0852 |
DOI: | 10.2991/jnmp.2008.15.1.7 |