Multi-Mode Front Lens for Momentum Microscopy: Part II Experiments
We have experimentally demonstrated different operating modes for the front lenses of the momentum microscopes described in Part I. Measurements at energies from vacuum UV at a high-harmonic generation (HHG)-based source to the soft and hard X-ray range at a synchrotron facility validated the result...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have experimentally demonstrated different operating modes for the front lenses of the momentum microscopes described in Part I. Measurements at energies from vacuum UV at a high-harmonic generation (HHG)-based source to the soft and hard X-ray range at a synchrotron facility validated the results of theoretical ray-tracing calculations. The key element is a ring electrode concentric with the extractor electrode, which can tailor the field in the gap. First, the gap-lens-assisted extractor mode reduces the field strength at the sample while mitigating image aberrations. This mode gave good results in all spectral ranges. Secondly, by compensating the field at the sample surface with a negative voltage at the ring electrode we can operate in zero-field mode, which is beneficial for operando experiments. Finally, higher negative voltages establish the repeller mode, which removes all slow electrons below a certain kinetic energy to eliminate the primary contribution to the space-charge interaction in pump-probe experiments. The switch from extractor to repeller mode is associated with a reduction in the k-field-of-view (10-20 % at hard-X-ray energies, increasing to ~50% at low energies). Real-space imaging also benefits from the new lens modes as confirmed by ToF-XPEEM imaging with 650 nm resolution. |
---|---|
ISSN: | 2331-8422 |