Diaz-Metcalf type inequality for Sugeno and pseudo-integrals
In this paper, we have proved Diaz-Metcalf inequality for fuzzy integrals. More precisely: \\ If $f, g: [0, 1]\to\mathbb{R}$ are continuous and strictly increasing functions, then the fuzzy integral inequality $$ - \hspace{-1em} \int_0^1 f^s d\mu\cdot - \hspace{-1em} \int_0^1 g^sd\mu\le - \hspace{-1...
Gespeichert in:
Veröffentlicht in: | Iranian journal of fuzzy systems (Online) 2023-05, Vol.20 (3), p.31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we have proved Diaz-Metcalf inequality for fuzzy integrals. More precisely: \\ If $f, g: [0, 1]\to\mathbb{R}$ are continuous and strictly increasing functions, then the fuzzy integral inequality $$ - \hspace{-1em} \int_0^1 f^s d\mu\cdot - \hspace{-1em} \int_0^1 g^sd\mu\le - \hspace{-1em} \int_0^1\left(f\cdot g\right)^sd\mu,$$ holds, where $s>1$ and $\mu$ is the Lebesgue measure on $\mathbb{R}$. In addition, we have shown this inequality for pseudo-integrals. |
---|---|
ISSN: | 1735-0654 2676-4334 |
DOI: | 10.22111/ijfs.2023.7637 |