Diaz-Metcalf type inequality for Sugeno and pseudo-integrals

In this paper, we have proved Diaz-Metcalf inequality for fuzzy integrals. More precisely: \\ If $f, g: [0, 1]\to\mathbb{R}$ are continuous and strictly increasing functions, then the fuzzy integral inequality $$ - \hspace{-1em} \int_0^1 f^s d\mu\cdot - \hspace{-1em} \int_0^1 g^sd\mu\le - \hspace{-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of fuzzy systems (Online) 2023-05, Vol.20 (3), p.31
Hauptverfasser: Karimzadeh, M R, Daraby, B, Rahimi, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we have proved Diaz-Metcalf inequality for fuzzy integrals. More precisely: \\ If $f, g: [0, 1]\to\mathbb{R}$ are continuous and strictly increasing functions, then the fuzzy integral inequality $$ - \hspace{-1em} \int_0^1 f^s d\mu\cdot - \hspace{-1em} \int_0^1 g^sd\mu\le - \hspace{-1em} \int_0^1\left(f\cdot g\right)^sd\mu,$$ holds, where $s>1$ and $\mu$ is the Lebesgue measure on $\mathbb{R}$. In addition, we have shown this inequality for pseudo-integrals.
ISSN:1735-0654
2676-4334
DOI:10.22111/ijfs.2023.7637