Linguistic Steganography: Hiding Information in Syntax Space

To enhance the embedding capacity, the existing linguistic steganography methods predominantly focus on the word or phrase level, with limited emphasis on the sentence level. Nevertheless, these approaches exhibit a deficiency in achieving an optimal balance between embedding capacity and semantic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2024-01, Vol.31, p.1-5
Hauptverfasser: Xiang, Lingyun, Ou, Chengfu, Zeng, Daojian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance the embedding capacity, the existing linguistic steganography methods predominantly focus on the word or phrase level, with limited emphasis on the sentence level. Nevertheless, these approaches exhibit a deficiency in achieving an optimal balance between embedding capacity and semantic coherence. Moreover, compromised semantic coherence can potentially increase security risks. In this paper, we propose a novel sentence-level Stega nography framework to H ide I nformation in S yntax S pace (HISS-Stega) that enables larger embedding capacity while preserving better semantic coherence. Specifically, HISS-Stega builds a syntax-controlled paraphrase generation model to automatically modify the expression forms of the covertext, thereby augmenting the diversity of transformations. This enhancement contributes to the overall improvement in embedding capacity. Subsequently, a syntactic bins coding strategy is employed for successfully embedding secret information in the generated syntax space. Furthermore, HISS-Stega incorporates a semantic distortion function aimed at identifying the optimal syntactic structure for concealing secret information, thereby ensuring enhanced semantic coherence and mitigating potential security risks. The experimental results demonstrate that, in comparison to existing methods, HISS-Stega not only enhances the embedding capacity of each sentence but also maintains a high level of semantic coherence and anti-steganalysis capability.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2023.3347153