Mobile crowd computing: potential, architecture, requirements, challenges, and applications

Owing to the enormous advancement in miniature hardware, modern smart mobile devices (SMDs) have become computationally powerful. Mobile crowd computing (MCC) is the computing paradigm that uses public-owned SMDs to garner affordable high-performance computing (HPC). Though several empirical works h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024, Vol.80 (2), p.2223-2318
Hauptverfasser: Pramanik, Pijush Kanti Dutta, Pal, Saurabh, Choudhury, Prasenjit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to the enormous advancement in miniature hardware, modern smart mobile devices (SMDs) have become computationally powerful. Mobile crowd computing (MCC) is the computing paradigm that uses public-owned SMDs to garner affordable high-performance computing (HPC). Though several empirical works have established the feasibility of mobile-based computing for various applications, there is a lack of comprehensive coverage of MCC. This paper aims to explore the fundamentals and other nitty–gritty of the idea of MCC in a comprehensive manner. Starting with an explicit definition of MCC, the enabling backdrops and the detailed architectural layouts of different models of MCC are presented, along with categorising different types of MCC based on infrastructure and application demands. MCC is compared extensively with other HPC systems (e.g. desktop grid, cloud, clusters and supercomputers) and similar mobile computing systems (e.g. mobile grid, mobile cloud, ad hoc mobile cloud, and mobile crowdsourcing). MCC being a complex system, various design requirements and considerations are extensively analysed. The potential benefits of MCC are meticulously mentioned, with special discussions on the ubiquity and sustainability of MCC. The issues and challenges of MCC are critically presented in light of further research scopes. Several real-world applications of MCC are identified and propositioned. Finally, to carry forward the accomplishment of the MCC vision, the future prospects are briefly elucidated.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-023-05545-0