Learning from Semi-Factuals: A Debiased and Semantic-Aware Framework for Generalized Relation Discovery

We introduce a novel task, called Generalized Relation Discovery (GRD), for open-world relation extraction. GRD aims to identify unlabeled instances in existing pre-defined relations or discover novel relations by assigning instances to clusters as well as providing specific meanings for these clust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Wang, Jiaxin, Zhang, Lingling, Liu, Jun, Guo, Tianlin, Wu, Wenjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a novel task, called Generalized Relation Discovery (GRD), for open-world relation extraction. GRD aims to identify unlabeled instances in existing pre-defined relations or discover novel relations by assigning instances to clusters as well as providing specific meanings for these clusters. The key challenges of GRD are how to mitigate the serious model biases caused by labeled pre-defined relations to learn effective relational representations and how to determine the specific semantics of novel relations during classifying or clustering unlabeled instances. We then propose a novel framework, SFGRD, for this task to solve the above issues by learning from semi-factuals in two stages. The first stage is semi-factual generation implemented by a tri-view debiased relation representation module, in which we take each original sentence as the main view and design two debiased views to generate semi-factual examples for this sentence. The second stage is semi-factual thinking executed by a dual-space tri-view collaborative relation learning module, where we design a cluster-semantic space and a class-index space to learn relational semantics and relation label indices, respectively. In addition, we devise alignment and selection strategies to integrate two spaces and establish a self-supervised learning loop for unlabeled data by doing semi-factual thinking across three views. Extensive experimental results show that SFGRD surpasses state-of-the-art models in terms of accuracy by 2.36\% \(\sim\)5.78\% and cosine similarity by 32.19\%\(\sim\) 84.45\% for relation label index and relation semantic quality, respectively. To the best of our knowledge, we are the first to exploit the efficacy of semi-factuals in relation extraction.
ISSN:2331-8422