The probability of non-isomorphic group structures of isogenous elliptic curves in finite field extensions, II
Let \(E\) and \(E'\) be 2-isogenous elliptic curves over \(\Q\). Following \cite{ck}, we call a good prime \(p\) \emph{anomalous} if \(E(\F_p) \simeq E'(\F_p)\) but \(E(\F_{p^2}) \not \simeq E'(\F_{p^2})\). Our main result is an explicit formula for the proportion of anomalous primes...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(E\) and \(E'\) be 2-isogenous elliptic curves over \(\Q\). Following \cite{ck}, we call a good prime \(p\) \emph{anomalous} if \(E(\F_p) \simeq E'(\F_p)\) but \(E(\F_{p^2}) \not \simeq E'(\F_{p^2})\). Our main result is an explicit formula for the proportion of anomalous primes for any such pair of elliptic curves. We consider both the CM case and the non-CM case. |
---|---|
ISSN: | 2331-8422 |