Three-dimensional integration of two-dimensional field-effect transistors

In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as ‘More Moore’ 1 but also introduces multifunctionalities for ‘More than Moore’ 2 technologies. Although silicon-based 3D integrated circuits are commercially ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-01, Vol.625 (7994), p.276-281
Hauptverfasser: Jayachandran, Darsith, Pendurthi, Rahul, Sadaf, Muhtasim Ul Karim, Sakib, Najam U, Pannone, Andrew, Chen, Chen, Han, Ying, Trainor, Nicholas, Kumari, Shalini, Mc Knight, Thomas V., Redwing, Joan M., Yang, Yang, Das, Saptarshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 7994
container_start_page 276
container_title Nature (London)
container_volume 625
creator Jayachandran, Darsith
Pendurthi, Rahul
Sadaf, Muhtasim Ul Karim
Sakib, Najam U
Pannone, Andrew
Chen, Chen
Han, Ying
Trainor, Nicholas
Kumari, Shalini
Mc Knight, Thomas V.
Redwing, Joan M.
Yang, Yang
Das, Saptarshi
description In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as ‘More Moore’ 1 but also introduces multifunctionalities for ‘More than Moore’ 2 technologies. Although silicon-based 3D integrated circuits are commercially available 3 – 5 , there is limited effort on 3D integration of emerging nanomaterials 6 , 7 such as two-dimensional (2D) materials despite their unique functionalities 7 – 10 . Here we demonstrate (1) wafer-scale and monolithic two-tier 3D integration based on MoS 2 with more than 10,000 field-effect transistors (FETs) in each tier; (2) three-tier 3D integration based on both MoS 2 and WSe 2 with about 500 FETs in each tier; and (3) two-tier 3D integration based on 200 scaled MoS 2 FETs (channel length, L CH  = 45 nm) in each tier. We also realize a 3D circuit and demonstrate multifunctional capabilities, including sensing and storage. We believe that our demonstrations will serve as the foundation for more sophisticated, highly dense and functionally divergent integrated circuits with a larger number of tiers integrated monolithically in the third dimension. Monolithic three-dimensional integration of two-dimensional field-effect transistors enables improved integration density and multifunctionality to realize ‘More Moore’ and ‘More than Moore’ technologies.
doi_str_mv 10.1038/s41586-023-06860-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2914898318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2914898318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-f2c7884edb4640243a226890187bfd974ba3612ff076bb642596df128a87a5d33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAcpeI5OPjaZPUrxoyB4qeeQ3U3qlna3Jinivze6VfHiaZh533lneAg5Z3DFQOB1lKxARYELCgoV0OKAjJnUikqF-pCMAThSQKFG5CTGFQAUTMtjMhLIAQTAmMwXL8E52rQb18W27-x62nbJLYNNuZv2fpre-j-yb926oc57V6dpCjbPY-pDPCVH3q6jO9vXCXm-u13MHujj0_18dvNIayF5op7XGlG6ppJKApfCcq6wBIa68k2pZWWFYtx70KqqlORFqRrPOFrUtmiEmJDLIXcb-tedi8ms-l3In0XDSyaxRMEwu_jgqkMfY3DebEO7seHdMDCf9MxAz2R65oueKfLSxT56V21c87PyjSsbxGCIWeqWLvze_if2A8Rweh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2914898318</pqid></control><display><type>article</type><title>Three-dimensional integration of two-dimensional field-effect transistors</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jayachandran, Darsith ; Pendurthi, Rahul ; Sadaf, Muhtasim Ul Karim ; Sakib, Najam U ; Pannone, Andrew ; Chen, Chen ; Han, Ying ; Trainor, Nicholas ; Kumari, Shalini ; Mc Knight, Thomas V. ; Redwing, Joan M. ; Yang, Yang ; Das, Saptarshi</creator><creatorcontrib>Jayachandran, Darsith ; Pendurthi, Rahul ; Sadaf, Muhtasim Ul Karim ; Sakib, Najam U ; Pannone, Andrew ; Chen, Chen ; Han, Ying ; Trainor, Nicholas ; Kumari, Shalini ; Mc Knight, Thomas V. ; Redwing, Joan M. ; Yang, Yang ; Das, Saptarshi</creatorcontrib><description>In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as ‘More Moore’ 1 but also introduces multifunctionalities for ‘More than Moore’ 2 technologies. Although silicon-based 3D integrated circuits are commercially available 3 – 5 , there is limited effort on 3D integration of emerging nanomaterials 6 , 7 such as two-dimensional (2D) materials despite their unique functionalities 7 – 10 . Here we demonstrate (1) wafer-scale and monolithic two-tier 3D integration based on MoS 2 with more than 10,000 field-effect transistors (FETs) in each tier; (2) three-tier 3D integration based on both MoS 2 and WSe 2 with about 500 FETs in each tier; and (3) two-tier 3D integration based on 200 scaled MoS 2 FETs (channel length, L CH  = 45 nm) in each tier. We also realize a 3D circuit and demonstrate multifunctional capabilities, including sensing and storage. We believe that our demonstrations will serve as the foundation for more sophisticated, highly dense and functionally divergent integrated circuits with a larger number of tiers integrated monolithically in the third dimension. Monolithic three-dimensional integration of two-dimensional field-effect transistors enables improved integration density and multifunctionality to realize ‘More Moore’ and ‘More than Moore’ technologies.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06860-5</identifier><identifier>PMID: 38200300</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/301/1005/1007 ; 639/301/357/1018 ; Field effect transistors ; Humanities and Social Sciences ; Integrated circuits ; Molybdenum disulfide ; multidisciplinary ; Organic chemicals ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Semiconductor devices ; Semiconductors ; Silicon ; Spectrum analysis ; Standard deviation ; Transistors ; Two dimensional materials</subject><ispartof>Nature (London), 2024-01, Vol.625 (7994), p.276-281</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 11, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-f2c7884edb4640243a226890187bfd974ba3612ff076bb642596df128a87a5d33</citedby><cites>FETCH-LOGICAL-c342t-f2c7884edb4640243a226890187bfd974ba3612ff076bb642596df128a87a5d33</cites><orcidid>0000-0001-6457-2858 ; 0000-0002-0188-945X ; 0000-0001-7849-1995 ; 0000-0002-0025-5914 ; 0000-0002-6621-2351 ; 0000-0002-7906-452X ; 0000-0001-9013-3699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06860-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06860-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38200300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayachandran, Darsith</creatorcontrib><creatorcontrib>Pendurthi, Rahul</creatorcontrib><creatorcontrib>Sadaf, Muhtasim Ul Karim</creatorcontrib><creatorcontrib>Sakib, Najam U</creatorcontrib><creatorcontrib>Pannone, Andrew</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Han, Ying</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Mc Knight, Thomas V.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Das, Saptarshi</creatorcontrib><title>Three-dimensional integration of two-dimensional field-effect transistors</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as ‘More Moore’ 1 but also introduces multifunctionalities for ‘More than Moore’ 2 technologies. Although silicon-based 3D integrated circuits are commercially available 3 – 5 , there is limited effort on 3D integration of emerging nanomaterials 6 , 7 such as two-dimensional (2D) materials despite their unique functionalities 7 – 10 . Here we demonstrate (1) wafer-scale and monolithic two-tier 3D integration based on MoS 2 with more than 10,000 field-effect transistors (FETs) in each tier; (2) three-tier 3D integration based on both MoS 2 and WSe 2 with about 500 FETs in each tier; and (3) two-tier 3D integration based on 200 scaled MoS 2 FETs (channel length, L CH  = 45 nm) in each tier. We also realize a 3D circuit and demonstrate multifunctional capabilities, including sensing and storage. We believe that our demonstrations will serve as the foundation for more sophisticated, highly dense and functionally divergent integrated circuits with a larger number of tiers integrated monolithically in the third dimension. Monolithic three-dimensional integration of two-dimensional field-effect transistors enables improved integration density and multifunctionality to realize ‘More Moore’ and ‘More than Moore’ technologies.</description><subject>140/133</subject><subject>639/301/1005/1007</subject><subject>639/301/357/1018</subject><subject>Field effect transistors</subject><subject>Humanities and Social Sciences</subject><subject>Integrated circuits</subject><subject>Molybdenum disulfide</subject><subject>multidisciplinary</subject><subject>Organic chemicals</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Spectrum analysis</subject><subject>Standard deviation</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAcpeI5OPjaZPUrxoyB4qeeQ3U3qlna3Jinivze6VfHiaZh533lneAg5Z3DFQOB1lKxARYELCgoV0OKAjJnUikqF-pCMAThSQKFG5CTGFQAUTMtjMhLIAQTAmMwXL8E52rQb18W27-x62nbJLYNNuZv2fpre-j-yb926oc57V6dpCjbPY-pDPCVH3q6jO9vXCXm-u13MHujj0_18dvNIayF5op7XGlG6ppJKApfCcq6wBIa68k2pZWWFYtx70KqqlORFqRrPOFrUtmiEmJDLIXcb-tedi8ms-l3In0XDSyaxRMEwu_jgqkMfY3DebEO7seHdMDCf9MxAz2R65oueKfLSxT56V21c87PyjSsbxGCIWeqWLvze_if2A8Rweh4</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Jayachandran, Darsith</creator><creator>Pendurthi, Rahul</creator><creator>Sadaf, Muhtasim Ul Karim</creator><creator>Sakib, Najam U</creator><creator>Pannone, Andrew</creator><creator>Chen, Chen</creator><creator>Han, Ying</creator><creator>Trainor, Nicholas</creator><creator>Kumari, Shalini</creator><creator>Mc Knight, Thomas V.</creator><creator>Redwing, Joan M.</creator><creator>Yang, Yang</creator><creator>Das, Saptarshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6457-2858</orcidid><orcidid>https://orcid.org/0000-0002-0188-945X</orcidid><orcidid>https://orcid.org/0000-0001-7849-1995</orcidid><orcidid>https://orcid.org/0000-0002-0025-5914</orcidid><orcidid>https://orcid.org/0000-0002-6621-2351</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0001-9013-3699</orcidid></search><sort><creationdate>20240111</creationdate><title>Three-dimensional integration of two-dimensional field-effect transistors</title><author>Jayachandran, Darsith ; Pendurthi, Rahul ; Sadaf, Muhtasim Ul Karim ; Sakib, Najam U ; Pannone, Andrew ; Chen, Chen ; Han, Ying ; Trainor, Nicholas ; Kumari, Shalini ; Mc Knight, Thomas V. ; Redwing, Joan M. ; Yang, Yang ; Das, Saptarshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-f2c7884edb4640243a226890187bfd974ba3612ff076bb642596df128a87a5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/133</topic><topic>639/301/1005/1007</topic><topic>639/301/357/1018</topic><topic>Field effect transistors</topic><topic>Humanities and Social Sciences</topic><topic>Integrated circuits</topic><topic>Molybdenum disulfide</topic><topic>multidisciplinary</topic><topic>Organic chemicals</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Spectrum analysis</topic><topic>Standard deviation</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayachandran, Darsith</creatorcontrib><creatorcontrib>Pendurthi, Rahul</creatorcontrib><creatorcontrib>Sadaf, Muhtasim Ul Karim</creatorcontrib><creatorcontrib>Sakib, Najam U</creatorcontrib><creatorcontrib>Pannone, Andrew</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Han, Ying</creatorcontrib><creatorcontrib>Trainor, Nicholas</creatorcontrib><creatorcontrib>Kumari, Shalini</creatorcontrib><creatorcontrib>Mc Knight, Thomas V.</creatorcontrib><creatorcontrib>Redwing, Joan M.</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Das, Saptarshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayachandran, Darsith</au><au>Pendurthi, Rahul</au><au>Sadaf, Muhtasim Ul Karim</au><au>Sakib, Najam U</au><au>Pannone, Andrew</au><au>Chen, Chen</au><au>Han, Ying</au><au>Trainor, Nicholas</au><au>Kumari, Shalini</au><au>Mc Knight, Thomas V.</au><au>Redwing, Joan M.</au><au>Yang, Yang</au><au>Das, Saptarshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional integration of two-dimensional field-effect transistors</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-01-11</date><risdate>2024</risdate><volume>625</volume><issue>7994</issue><spage>276</spage><epage>281</epage><pages>276-281</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>In the field of semiconductors, three-dimensional (3D) integration not only enables packaging of more devices per unit area, referred to as ‘More Moore’ 1 but also introduces multifunctionalities for ‘More than Moore’ 2 technologies. Although silicon-based 3D integrated circuits are commercially available 3 – 5 , there is limited effort on 3D integration of emerging nanomaterials 6 , 7 such as two-dimensional (2D) materials despite their unique functionalities 7 – 10 . Here we demonstrate (1) wafer-scale and monolithic two-tier 3D integration based on MoS 2 with more than 10,000 field-effect transistors (FETs) in each tier; (2) three-tier 3D integration based on both MoS 2 and WSe 2 with about 500 FETs in each tier; and (3) two-tier 3D integration based on 200 scaled MoS 2 FETs (channel length, L CH  = 45 nm) in each tier. We also realize a 3D circuit and demonstrate multifunctional capabilities, including sensing and storage. We believe that our demonstrations will serve as the foundation for more sophisticated, highly dense and functionally divergent integrated circuits with a larger number of tiers integrated monolithically in the third dimension. Monolithic three-dimensional integration of two-dimensional field-effect transistors enables improved integration density and multifunctionality to realize ‘More Moore’ and ‘More than Moore’ technologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38200300</pmid><doi>10.1038/s41586-023-06860-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6457-2858</orcidid><orcidid>https://orcid.org/0000-0002-0188-945X</orcidid><orcidid>https://orcid.org/0000-0001-7849-1995</orcidid><orcidid>https://orcid.org/0000-0002-0025-5914</orcidid><orcidid>https://orcid.org/0000-0002-6621-2351</orcidid><orcidid>https://orcid.org/0000-0002-7906-452X</orcidid><orcidid>https://orcid.org/0000-0001-9013-3699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-01, Vol.625 (7994), p.276-281
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_2914898318
source SpringerLink Journals; Nature Journals Online
subjects 140/133
639/301/1005/1007
639/301/357/1018
Field effect transistors
Humanities and Social Sciences
Integrated circuits
Molybdenum disulfide
multidisciplinary
Organic chemicals
Scanning electron microscopy
Science
Science (multidisciplinary)
Semiconductor devices
Semiconductors
Silicon
Spectrum analysis
Standard deviation
Transistors
Two dimensional materials
title Three-dimensional integration of two-dimensional field-effect transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20integration%20of%20two-dimensional%20field-effect%20transistors&rft.jtitle=Nature%20(London)&rft.au=Jayachandran,%20Darsith&rft.date=2024-01-11&rft.volume=625&rft.issue=7994&rft.spage=276&rft.epage=281&rft.pages=276-281&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06860-5&rft_dat=%3Cproquest_cross%3E2914898318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2914898318&rft_id=info:pmid/38200300&rfr_iscdi=true