Clean Synthetic Strategies to Biologically Active Molecules from Lignin: A Green Path to Drug Discovery

Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply‐chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin‐first biorefining,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-01, Vol.136 (4), p.n/a
Hauptverfasser: Afanasenko, Anastasiia M., Wu, Xianyuan, De Santi, Alessandra, Elgaher, Walid A. M., Kany, Andreas M., Shafiei, Roya, Schulze, Marie‐Sophie, Schulz, Thomas F., Haupenthal, Jörg, Hirsch, Anna K. H., Barta, Katalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply‐chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin‐first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural‐similarity search. The resulting sustainable path to novel anti‐infective, anti‐inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti‐infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3‐arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom‐economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps. Sustainable strategies inspired by the innate structural features of lignin were developed for the synthesis of diverse biologically active compounds, including tetrahydroisoquinolines, quinazolinones, dopamine and the natural product tetrahydropapaveroline. The synthetic approach enabled the rapid assessment of relevant biological activities through in vitro and in vivo studies and computational similarity searches, with multiple promising hits identified.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202308131