On nonlinear Sobolev equation with the Caputo fractional operator and exponential nonlinearity
The initial value problem for the Caputo type time‐fractional Sobolev equation with a nonlinear exponential source function is investigated in this work. We establish the existence and uniqueness of mild solutions corresponding to two different initial data assumptions. We derive global results of a...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-02, Vol.47 (3), p.1492-1513 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The initial value problem for the Caputo type time‐fractional Sobolev equation with a nonlinear exponential source function is investigated in this work. We establish the existence and uniqueness of mild solutions corresponding to two different initial data assumptions. We derive global results of a unique mild solution with small initial data using some Sobolev/Sobolev‐Orlicz embeddings, a weighted Banach space, and the fixed point theorem. In the absence of any smallness assumptions, the Cauchy iteration method demonstrates that the mild solution blows up at a finite time or exists globally in time. Finally, we consider some illustrated examples to test the results obtained in theory. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9624 |