An obstacle problem arising from American options pricing: regularity of solutions
We analyse the obstacle problem for the nonlocal parabolic operator where b ∈ R n , r ∈ R , and is a nonlocal lower order diffusion operator with respect to the fractional Laplace operator ( - Δ ) s . This model appears in the study of American options pricing when the stochastic process governing t...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024-03, Vol.63 (2), Article 33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyse the obstacle problem for the nonlocal parabolic operator
where
b
∈
R
n
,
r
∈
R
, and
is a nonlocal lower order diffusion operator with respect to the fractional Laplace operator
(
-
Δ
)
s
. This model appears in the study of American options pricing when the stochastic process governing the stock price is assumed to be a purely jump process. We study the existence and the uniqueness of solutions to the obstacle problem, and we prove optimal regularity of solutions in space, and almost optimal regularity in time. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-023-02639-8 |