An obstacle problem arising from American options pricing: regularity of solutions

We analyse the obstacle problem for the nonlocal parabolic operator where b ∈ R n , r ∈ R , and is a nonlocal lower order diffusion operator with respect to the fractional Laplace operator ( - Δ ) s . This model appears in the study of American options pricing when the stochastic process governing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2024-03, Vol.63 (2), Article 33
Hauptverfasser: Borrin, Henrique, Marcon, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyse the obstacle problem for the nonlocal parabolic operator where b ∈ R n , r ∈ R , and is a nonlocal lower order diffusion operator with respect to the fractional Laplace operator ( - Δ ) s . This model appears in the study of American options pricing when the stochastic process governing the stock price is assumed to be a purely jump process. We study the existence and the uniqueness of solutions to the obstacle problem, and we prove optimal regularity of solutions in space, and almost optimal regularity in time.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02639-8