Machine Learning (ML)-assisted Beam Management in millimeter (mm)Wave Distributed Multiple Input Multiple Output (D-MIMO) systems
Beam management (BM) protocols are critical for establishing and maintaining connectivity between network radio nodes and User Equipments (UEs). In Distributed Multiple Input Multiple Output systems (D-MIMO), a number of access points (APs), coordinated by a central processing unit (CPU), serves a n...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beam management (BM) protocols are critical for establishing and maintaining connectivity between network radio nodes and User Equipments (UEs). In Distributed Multiple Input Multiple Output systems (D-MIMO), a number of access points (APs), coordinated by a central processing unit (CPU), serves a number of UEs. At mmWave frequencies, the problem of finding the best AP and beam to serve the UEs is challenging due to a large number of beams that need to be sounded with Downlink (DL) reference signals. The objective of this paper is to investigate whether the best AP/beam can be reliably inferred from sounding only a small subset of beams and leveraging AI/ML for inference of best beam/AP. We use Random Forest (RF), MissForest (MF) and conditional Generative Adversarial Networks (c-GAN) for demonstrating the performance benefits of inference. |
---|---|
ISSN: | 2331-8422 |