An improved adaptive weights correction-particle swarm optimization-unscented particle filter method for high-precision online state of charge estimation of lithium-ion batteries

In the battery management system (BMS), the state of charge (SOC) of lithium-ion batteries is an indispensable part, and the accuracy of SOC estimation has attracted wide attention. Accurate SOC estimation can improve the efficiency of battery use while ensuring battery safety and improving battery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2024, Vol.30 (1), p.311-334
Hauptverfasser: Li, Zehao, Wang, Shunli, Yu, Chunmei, Qi, Chuangshi, Shen, Xianfeng, Fernandez, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the battery management system (BMS), the state of charge (SOC) of lithium-ion batteries is an indispensable part, and the accuracy of SOC estimation has attracted wide attention. Accurate SOC estimation can improve the efficiency of battery use while ensuring battery safety and improving battery life. Taking ternary lithium battery as the research object, this paper proposes a parameter identification method using adaptive forgetting factor recursive least squares and an improved joint unscented particle filter algorithm to estimate SOC. Firstly, an adaptive method is used to select the appropriate forgetting factor value to improve the accuracy of the forgetting factor recursive least squares (FFRLS) method. Meanwhile, the improved particle swarm (IPSO) optimization algorithm that incorporates variable weights and shrinkage factors is utilized to make the best choice of the noise for the unscented Kalman filter (UKF) algorithm in order to improve the estimation accuracy of the UKF algorithm. At the same time, the UKF algorithm is used as the suggestion density function of the particle filter (PF) algorithm to form the unscented particle filter (UPF) algorithm. In this paper, the AFFRLS algorithm and IPSO-SDUPF algorithm are combined to estimate the SOC of Li-ion batteries in real time. Experimental results under different working conditions show that the proposed algorithm has good convergence and high stability for SOC estimation of lithium-ion batteries. The maximum estimation errors of this algorithm are 1.137% and 0.797% for BBDST and DST conditions at 25 °C, and 1.015% and 1.029% for BBDST and DST conditions at 35 °C, which are lower than those of the commonly used algorithms of EKF, SDUKF, IPSO-SDUKF, and SDUPF, and provide a reference for future. The maximum estimation errors are lower than those of the commonly used EKF, SDUKF, IPSO-SDUKF, and SDUPF algorithms, which provide a reference for the future high-precision SOC estimation of Li-ion batteries.
ISSN:0947-7047
1862-0760
DOI:10.1007/s11581-023-05272-9