Disjoint strong transitivity of composition operators

A Furstenberg family F is a collection of infinite subsets of the set of positive integers such that if A ⊂ B and A ∈ F , then B ∈ F . For a Furstenberg family F , finitely many operators T 1 , . . . , T N acting on a common topological vector space X are said to be disjoint F -transitive if for eve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2024, Vol.75 (1), p.171-187
Hauptverfasser: Karim, Noureddine, Benchiheb, Otmane, Amouch, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Furstenberg family F is a collection of infinite subsets of the set of positive integers such that if A ⊂ B and A ∈ F , then B ∈ F . For a Furstenberg family F , finitely many operators T 1 , . . . , T N acting on a common topological vector space X are said to be disjoint F -transitive if for every non-empty open subsets U 0 , . . . , U N of X the set { n ∈ N : U 0 ∩ T 1 - n ( U 1 ) ∩ . . . ∩ T N - n ( U N ) ≠ ∅ } belongs to F . In this paper, depending on the topological properties of Ω , we characterize the disjoint F -transitivity of N ≥ 2 composition operators C ϕ 1 , … , C ϕ N acting on the space H ( Ω ) of holomorphic maps on a domain Ω ⊂ C by establishing a necessary and sufficient condition in terms of their symbols ϕ 1 , . . . , ϕ N .
ISSN:0010-0757
2038-4815
DOI:10.1007/s13348-022-00383-4