Disjoint strong transitivity of composition operators
A Furstenberg family F is a collection of infinite subsets of the set of positive integers such that if A ⊂ B and A ∈ F , then B ∈ F . For a Furstenberg family F , finitely many operators T 1 , . . . , T N acting on a common topological vector space X are said to be disjoint F -transitive if for eve...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2024, Vol.75 (1), p.171-187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Furstenberg family
F
is a collection of infinite subsets of the set of positive integers such that if
A
⊂
B
and
A
∈
F
, then
B
∈
F
. For a Furstenberg family
F
, finitely many operators
T
1
,
.
.
.
,
T
N
acting on a common topological vector space
X
are said to be disjoint
F
-transitive if for every non-empty open subsets
U
0
,
.
.
.
,
U
N
of
X
the set
{
n
∈
N
:
U
0
∩
T
1
-
n
(
U
1
)
∩
.
.
.
∩
T
N
-
n
(
U
N
)
≠
∅
}
belongs to
F
. In this paper, depending on the topological properties of
Ω
, we characterize the disjoint
F
-transitivity of
N
≥
2
composition operators
C
ϕ
1
,
…
,
C
ϕ
N
acting on the space
H
(
Ω
)
of holomorphic maps on a domain
Ω
⊂
C
by establishing a necessary and sufficient condition in terms of their symbols
ϕ
1
,
.
.
.
,
ϕ
N
. |
---|---|
ISSN: | 0010-0757 2038-4815 |
DOI: | 10.1007/s13348-022-00383-4 |