Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon
In an open, bounded Lipschitz polygon Ω ⊂ R 2 , we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term f which is analytic in Ω . The boundary conditions on each edge of ∂ Ω are either homogeneous Dirichlet or homogeneous Neum...
Gespeichert in:
Veröffentlicht in: | Calcolo 2024-03, Vol.61 (1), Article 11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Calcolo |
container_volume | 61 |
creator | He, Yanchen Schwab, Christoph |
description | In an open, bounded Lipschitz polygon
Ω
⊂
R
2
, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term
f
which is analytic in
Ω
. The boundary conditions on each edge of
∂
Ω
are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes:
hp
-finite elements, reduced order models via Kolmogorov
n
-widths of solution sets in
H
1
(
Ω
)
, quantized tensor formats and certain deep neural networks. |
doi_str_mv | 10.1007/s10092-023-00562-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913468521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913468521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c5c303ad2c4153b8b2d0fdcc664409ca070a6bf0bb83be4459c5fb1b881a7ace3</originalsourceid><addsrcrecordid>eNp9kE1LxDAYhIMouK7-AU8Bz9U3H822x2XxCxa86DkkabJkybbdpAX7781uBW9e8mZgnoEZhO4JPBKA1VPKb00LoKwAKEX-XaAFIVQUJWf8Ei0AoCpAUH6NblLaZ1nyii9QWrcqTIM3ONrdGFT0w4RV2-DUhXHwXYtV38fu2x_UWbkuYoWTPfjgW6sitiH4_sT3Kg5eBdx452y07VnY4zhzPgfhvgvTrmtv0ZVTIdm737tEXy_Pn5u3Yvvx-r5ZbwvDBBsKUxoGTDXUcFIyXWnagGuMEYJzqI2CFSihHWhdMW05L2tTOk10VRG1UsayJXqYc3OB42jTIPfdGHPfJGlNGBdVSUl20dllYpdStE72MbeNkyQgT-PKeVyZx5XncSVkiM1QyuZ2Z-Nf9D_UD04cf8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913468521</pqid></control><display><type>article</type><title>Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Yanchen ; Schwab, Christoph</creator><creatorcontrib>He, Yanchen ; Schwab, Christoph</creatorcontrib><description>In an open, bounded Lipschitz polygon
Ω
⊂
R
2
, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term
f
which is analytic in
Ω
. The boundary conditions on each edge of
∂
Ω
are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes:
hp
-finite elements, reduced order models via Kolmogorov
n
-widths of solution sets in
H
1
(
Ω
)
, quantized tensor formats and certain deep neural networks.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-023-00562-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Artificial neural networks ; Boundary conditions ; Dirichlet problem ; Finite element method ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Partial differential equations ; Polygons ; Reduced order models ; Regularity ; Tensors ; Theory of Computation</subject><ispartof>Calcolo, 2024-03, Vol.61 (1), Article 11</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c5c303ad2c4153b8b2d0fdcc664409ca070a6bf0bb83be4459c5fb1b881a7ace3</citedby><cites>FETCH-LOGICAL-c363t-c5c303ad2c4153b8b2d0fdcc664409ca070a6bf0bb83be4459c5fb1b881a7ace3</cites><orcidid>0000-0002-9722-0354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-023-00562-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-023-00562-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>He, Yanchen</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><title>Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>In an open, bounded Lipschitz polygon
Ω
⊂
R
2
, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term
f
which is analytic in
Ω
. The boundary conditions on each edge of
∂
Ω
are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes:
hp
-finite elements, reduced order models via Kolmogorov
n
-widths of solution sets in
H
1
(
Ω
)
, quantized tensor formats and certain deep neural networks.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Finite element method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Partial differential equations</subject><subject>Polygons</subject><subject>Reduced order models</subject><subject>Regularity</subject><subject>Tensors</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAYhIMouK7-AU8Bz9U3H822x2XxCxa86DkkabJkybbdpAX7781uBW9e8mZgnoEZhO4JPBKA1VPKb00LoKwAKEX-XaAFIVQUJWf8Ei0AoCpAUH6NblLaZ1nyii9QWrcqTIM3ONrdGFT0w4RV2-DUhXHwXYtV38fu2x_UWbkuYoWTPfjgW6sitiH4_sT3Kg5eBdx452y07VnY4zhzPgfhvgvTrmtv0ZVTIdm737tEXy_Pn5u3Yvvx-r5ZbwvDBBsKUxoGTDXUcFIyXWnagGuMEYJzqI2CFSihHWhdMW05L2tTOk10VRG1UsayJXqYc3OB42jTIPfdGHPfJGlNGBdVSUl20dllYpdStE72MbeNkyQgT-PKeVyZx5XncSVkiM1QyuZ2Z-Nf9D_UD04cf8A</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>He, Yanchen</creator><creator>Schwab, Christoph</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9722-0354</orcidid></search><sort><creationdate>20240301</creationdate><title>Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon</title><author>He, Yanchen ; Schwab, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c5c303ad2c4153b8b2d0fdcc664409ca070a6bf0bb83be4459c5fb1b881a7ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Finite element method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Partial differential equations</topic><topic>Polygons</topic><topic>Reduced order models</topic><topic>Regularity</topic><topic>Tensors</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yanchen</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yanchen</au><au>Schwab, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>61</volume><issue>1</issue><artnum>11</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>In an open, bounded Lipschitz polygon
Ω
⊂
R
2
, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term
f
which is analytic in
Ω
. The boundary conditions on each edge of
∂
Ω
are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes:
hp
-finite elements, reduced order models via Kolmogorov
n
-widths of solution sets in
H
1
(
Ω
)
, quantized tensor formats and certain deep neural networks.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-023-00562-0</doi><orcidid>https://orcid.org/0000-0002-9722-0354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2024-03, Vol.61 (1), Article 11 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_proquest_journals_2913468521 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Artificial neural networks Boundary conditions Dirichlet problem Finite element method Mathematics Mathematics and Statistics Numerical Analysis Partial differential equations Polygons Reduced order models Regularity Tensors Theory of Computation |
title | Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20regularity%20and%20solution%20approximation%20for%20a%20semilinear%20elliptic%20partial%20differential%20equation%20in%20a%20polygon&rft.jtitle=Calcolo&rft.au=He,%20Yanchen&rft.date=2024-03-01&rft.volume=61&rft.issue=1&rft.artnum=11&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-023-00562-0&rft_dat=%3Cproquest_cross%3E2913468521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913468521&rft_id=info:pmid/&rfr_iscdi=true |