Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon
In an open, bounded Lipschitz polygon Ω ⊂ R 2 , we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term f which is analytic in Ω . The boundary conditions on each edge of ∂ Ω are either homogeneous Dirichlet or homogeneous Neum...
Gespeichert in:
Veröffentlicht in: | Calcolo 2024-03, Vol.61 (1), Article 11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an open, bounded Lipschitz polygon
Ω
⊂
R
2
, we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term
f
which is analytic in
Ω
. The boundary conditions on each edge of
∂
Ω
are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes:
hp
-finite elements, reduced order models via Kolmogorov
n
-widths of solution sets in
H
1
(
Ω
)
, quantized tensor formats and certain deep neural networks. |
---|---|
ISSN: | 0008-0624 1126-5434 |
DOI: | 10.1007/s10092-023-00562-0 |