Analytic regularity and solution approximation for a semilinear elliptic partial differential equation in a polygon

In an open, bounded Lipschitz polygon Ω ⊂ R 2 , we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term f which is analytic in Ω . The boundary conditions on each edge of ∂ Ω are either homogeneous Dirichlet or homogeneous Neum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2024-03, Vol.61 (1), Article 11
Hauptverfasser: He, Yanchen, Schwab, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an open, bounded Lipschitz polygon Ω ⊂ R 2 , we establish weighted analytic regularity for a semilinear, elliptic PDE with analytic nonlinearity and subject to a source term f which is analytic in Ω . The boundary conditions on each edge of ∂ Ω are either homogeneous Dirichlet or homogeneous Neumann BCs. The presently established weighted analytic regularity of solutions implies exponential convergence of various approximation schemes: hp -finite elements, reduced order models via Kolmogorov n -widths of solution sets in H 1 ( Ω ) , quantized tensor formats and certain deep neural networks.
ISSN:0008-0624
1126-5434
DOI:10.1007/s10092-023-00562-0