A Design of Adaptive Genetic Algorithm-Based Optimized Power Amplifier for 5G Applications

In this paper, a novel adaptive genetic algorithm (AGA) is presented for the optimization goals. The presented AGA is discussed and implemented on a power amplifier (PA), which is designed for 24 GHz and 5G applications and fabricated in a 65-nm CMOS process. The PA is optimized by the AGA for the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2024, Vol.43 (1), p.2-21
Hauptverfasser: Delwar, Tahesin Samira, Siddique, Abrar, Aras, Unal, Ryu, Jee Youl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel adaptive genetic algorithm (AGA) is presented for the optimization goals. The presented AGA is discussed and implemented on a power amplifier (PA), which is designed for 24 GHz and 5G applications and fabricated in a 65-nm CMOS process. The PA is optimized by the AGA for the high power-added efficiency (PAE), i.e., optimum. In the AGA, we aimed to avoid the local optima and slow convergence rate that exist in the conventional genetic algorithm (CGA). In the AGA, we proposed a parameter tuning method to fine-tune the set of PA circuit component values for faster optimization of the PA to have a high PAE. The proposed AGA provides a significant speed in optimization process as compared to the CGA, and the execution time of the AGA is faster than that of the CGA. The proposed AGA is also verified, and its performance is compared with that of the CGA through multiple multidimensional mathematical benchmark functions. The PA performance parameters are measured, and the results showed that the optimized PA achieves a high gain of 29.9 dB. The P sat of PA is measured as 14.21 dBm, and IIP3 is 13.8 dBm. The simulated result shows the optimized PA with the AGA has PAE of 49.7%, while that with the CGA has PAE of 47.5% at 24 GHz. The final measured PAE of AGA’s optimized PA is 47.1%. The chip area of PA is 0.29 mm 2 .
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-023-02447-7