A Class of Oscillatory Singular Integrals with Rough Kernels and Fewnomials Phases
This paper is concerned with the oscillatory singular integral operator T Q defined by T Q f ( x ) = p . v . ∫ R n f ( x - y ) Ω ( y ) | y | n e i Q ( | y | ) d y , where Q ( t ) = ∑ 1 ≤ i ≤ m a i t α i is a real-valued polynomial on R , Ω is a homogenous function of degree zero on R n with mean val...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2024-02, Vol.30 (1), Article 10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the oscillatory singular integral operator
T
Q
defined by
T
Q
f
(
x
)
=
p
.
v
.
∫
R
n
f
(
x
-
y
)
Ω
(
y
)
|
y
|
n
e
i
Q
(
|
y
|
)
d
y
,
where
Q
(
t
)
=
∑
1
≤
i
≤
m
a
i
t
α
i
is a real-valued polynomial on
R
,
Ω
is a homogenous function of degree zero on
R
n
with mean value zero on the unit sphere
S
n
-
1
. Under the assumption of that
Ω
∈
H
1
(
S
n
-
1
)
, the authors show that
T
Q
is bounded on the weighted Lebesgue spaces
L
p
(
ω
)
for
1
<
p
<
∞
and
ω
∈
A
~
p
I
(
R
+
)
with the uniform bound only depending on
m
, the number of monomials in polynomial
Q
, not on the degree of
Q
as in the previous results. This result is new even in the case
ω
≡
1
, which can also be regarded as an improvement and generalization of the result obtained by Guo in [New York J. Math. 23 (2017), 1733-1738]. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-023-10066-8 |