Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks

This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-01, Vol.13 (1), p.1-1
Hauptverfasser: Liu, Yun, Huang, Chong, Chen, Gaojie, Song, Ruiliang, Song, Shutian, Xiao, Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE wireless communications letters
container_volume 13
creator Liu, Yun
Huang, Chong
Chen, Gaojie
Song, Ruiliang
Song, Shutian
Xiao, Pei
description This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.
doi_str_mv 10.1109/LWC.2023.3325066
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2912942683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287142</ieee_id><sourcerecordid>2912942683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</originalsourceid><addsrcrecordid>eNpNkEFPwkAQRhujiUS5e_Cwiefi7mx32x6xoJIQNAJ6bJbulBRht-4WCRd_uyUQ41xmDt-bmbwguGG0xxhN78cfWQ8o8B7nIKiUZ0EHmIQQeCTO_2YeXwZd71e0LUkZsKQT_AwQazJG5UxllmS4qe0OHWoyc2qFRWPdniijyavyvvpG8oBqU1q3OYQH6KulIZUh8_57-DaakqFRi3ULT7HYOiSZXZqqOWATa8IZOoe-cZVakwk2O-s-_XVwUaq1x-6pXwXzx-Esew7HL0-jrD8OC0ihCSMuEqkRKchUxzTCBCOIo5RpqZnQIAolEsYVClFGcZlqHfMFSzWVQiVAKb8K7o57a2e_tu0X-cpunWlP5pAySCOQCW9T9JgqnPXeYZnXrtoot88ZzQ-i81Z0fhCdn0S3yO0RqRDxXxySmEXAfwEhVnkD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912942683</pqid></control><display><type>article</type><title>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yun ; Huang, Chong ; Chen, Gaojie ; Song, Ruiliang ; Song, Shutian ; Xiao, Pei</creator><creatorcontrib>Liu, Yun ; Huang, Chong ; Chen, Gaojie ; Song, Ruiliang ; Song, Shutian ; Xiao, Pei</creatorcontrib><description>This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2023.3325066</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Beamforming ; cognitive non-terrestrial network ; Deep learning ; Interference ; Machine learning ; physical layer security ; Reconfigurable intelligent surface ; Reflection ; Reflection coefficient ; Rician channels ; Satellites ; Signal to noise ratio ; Trajectory optimization ; unmanned aerial vehicle ; Unmanned aerial vehicles</subject><ispartof>IEEE wireless communications letters, 2024-01, Vol.13 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</citedby><cites>FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</cites><orcidid>0000-0003-2978-0365 ; 0000-0002-0392-9398 ; 0000-0002-3916-3355 ; 0000-0002-7886-5878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Huang, Chong</creatorcontrib><creatorcontrib>Chen, Gaojie</creatorcontrib><creatorcontrib>Song, Ruiliang</creatorcontrib><creatorcontrib>Song, Shutian</creatorcontrib><creatorcontrib>Xiao, Pei</creatorcontrib><title>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Beamforming</subject><subject>cognitive non-terrestrial network</subject><subject>Deep learning</subject><subject>Interference</subject><subject>Machine learning</subject><subject>physical layer security</subject><subject>Reconfigurable intelligent surface</subject><subject>Reflection</subject><subject>Reflection coefficient</subject><subject>Rician channels</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><subject>Trajectory optimization</subject><subject>unmanned aerial vehicle</subject><subject>Unmanned aerial vehicles</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwkAQRhujiUS5e_Cwiefi7mx32x6xoJIQNAJ6bJbulBRht-4WCRd_uyUQ41xmDt-bmbwguGG0xxhN78cfWQ8o8B7nIKiUZ0EHmIQQeCTO_2YeXwZd71e0LUkZsKQT_AwQazJG5UxllmS4qe0OHWoyc2qFRWPdniijyavyvvpG8oBqU1q3OYQH6KulIZUh8_57-DaakqFRi3ULT7HYOiSZXZqqOWATa8IZOoe-cZVakwk2O-s-_XVwUaq1x-6pXwXzx-Esew7HL0-jrD8OC0ihCSMuEqkRKchUxzTCBCOIo5RpqZnQIAolEsYVClFGcZlqHfMFSzWVQiVAKb8K7o57a2e_tu0X-cpunWlP5pAySCOQCW9T9JgqnPXeYZnXrtoot88ZzQ-i81Z0fhCdn0S3yO0RqRDxXxySmEXAfwEhVnkD</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Yun</creator><creator>Huang, Chong</creator><creator>Chen, Gaojie</creator><creator>Song, Ruiliang</creator><creator>Song, Shutian</creator><creator>Xiao, Pei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2978-0365</orcidid><orcidid>https://orcid.org/0000-0002-0392-9398</orcidid><orcidid>https://orcid.org/0000-0002-3916-3355</orcidid><orcidid>https://orcid.org/0000-0002-7886-5878</orcidid></search><sort><creationdate>20240101</creationdate><title>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</title><author>Liu, Yun ; Huang, Chong ; Chen, Gaojie ; Song, Ruiliang ; Song, Shutian ; Xiao, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Beamforming</topic><topic>cognitive non-terrestrial network</topic><topic>Deep learning</topic><topic>Interference</topic><topic>Machine learning</topic><topic>physical layer security</topic><topic>Reconfigurable intelligent surface</topic><topic>Reflection</topic><topic>Reflection coefficient</topic><topic>Rician channels</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><topic>Trajectory optimization</topic><topic>unmanned aerial vehicle</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Huang, Chong</creatorcontrib><creatorcontrib>Chen, Gaojie</creatorcontrib><creatorcontrib>Song, Ruiliang</creatorcontrib><creatorcontrib>Song, Shutian</creatorcontrib><creatorcontrib>Xiao, Pei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yun</au><au>Huang, Chong</au><au>Chen, Gaojie</au><au>Song, Ruiliang</au><au>Song, Shutian</au><au>Xiao, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2023.3325066</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2978-0365</orcidid><orcidid>https://orcid.org/0000-0002-0392-9398</orcidid><orcidid>https://orcid.org/0000-0002-3916-3355</orcidid><orcidid>https://orcid.org/0000-0002-7886-5878</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2024-01, Vol.13 (1), p.1-1
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_2912942683
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous aerial vehicles
Beamforming
cognitive non-terrestrial network
Deep learning
Interference
Machine learning
physical layer security
Reconfigurable intelligent surface
Reflection
Reflection coefficient
Rician channels
Satellites
Signal to noise ratio
Trajectory optimization
unmanned aerial vehicle
Unmanned aerial vehicles
title Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Empowered%20Trajectory%20and%20Passive%20Beamforming%20Design%20in%20UAV-RIS%20Enabled%20Secure%20Cognitive%20Non-Terrestrial%20Networks&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Liu,%20Yun&rft.date=2024-01-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2023.3325066&rft_dat=%3Cproquest_RIE%3E2912942683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912942683&rft_id=info:pmid/&rft_ieee_id=10287142&rfr_iscdi=true