Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks
This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2024-01, Vol.13 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE wireless communications letters |
container_volume | 13 |
creator | Liu, Yun Huang, Chong Chen, Gaojie Song, Ruiliang Song, Shutian Xiao, Pei |
description | This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs. |
doi_str_mv | 10.1109/LWC.2023.3325066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2912942683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10287142</ieee_id><sourcerecordid>2912942683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</originalsourceid><addsrcrecordid>eNpNkEFPwkAQRhujiUS5e_Cwiefi7mx32x6xoJIQNAJ6bJbulBRht-4WCRd_uyUQ41xmDt-bmbwguGG0xxhN78cfWQ8o8B7nIKiUZ0EHmIQQeCTO_2YeXwZd71e0LUkZsKQT_AwQazJG5UxllmS4qe0OHWoyc2qFRWPdniijyavyvvpG8oBqU1q3OYQH6KulIZUh8_57-DaakqFRi3ULT7HYOiSZXZqqOWATa8IZOoe-cZVakwk2O-s-_XVwUaq1x-6pXwXzx-Esew7HL0-jrD8OC0ihCSMuEqkRKchUxzTCBCOIo5RpqZnQIAolEsYVClFGcZlqHfMFSzWVQiVAKb8K7o57a2e_tu0X-cpunWlP5pAySCOQCW9T9JgqnPXeYZnXrtoot88ZzQ-i81Z0fhCdn0S3yO0RqRDxXxySmEXAfwEhVnkD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912942683</pqid></control><display><type>article</type><title>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yun ; Huang, Chong ; Chen, Gaojie ; Song, Ruiliang ; Song, Shutian ; Xiao, Pei</creator><creatorcontrib>Liu, Yun ; Huang, Chong ; Chen, Gaojie ; Song, Ruiliang ; Song, Shutian ; Xiao, Pei</creatorcontrib><description>This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2023.3325066</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Beamforming ; cognitive non-terrestrial network ; Deep learning ; Interference ; Machine learning ; physical layer security ; Reconfigurable intelligent surface ; Reflection ; Reflection coefficient ; Rician channels ; Satellites ; Signal to noise ratio ; Trajectory optimization ; unmanned aerial vehicle ; Unmanned aerial vehicles</subject><ispartof>IEEE wireless communications letters, 2024-01, Vol.13 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</citedby><cites>FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</cites><orcidid>0000-0003-2978-0365 ; 0000-0002-0392-9398 ; 0000-0002-3916-3355 ; 0000-0002-7886-5878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10287142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10287142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Huang, Chong</creatorcontrib><creatorcontrib>Chen, Gaojie</creatorcontrib><creatorcontrib>Song, Ruiliang</creatorcontrib><creatorcontrib>Song, Shutian</creatorcontrib><creatorcontrib>Xiao, Pei</creatorcontrib><title>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Beamforming</subject><subject>cognitive non-terrestrial network</subject><subject>Deep learning</subject><subject>Interference</subject><subject>Machine learning</subject><subject>physical layer security</subject><subject>Reconfigurable intelligent surface</subject><subject>Reflection</subject><subject>Reflection coefficient</subject><subject>Rician channels</subject><subject>Satellites</subject><subject>Signal to noise ratio</subject><subject>Trajectory optimization</subject><subject>unmanned aerial vehicle</subject><subject>Unmanned aerial vehicles</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwkAQRhujiUS5e_Cwiefi7mx32x6xoJIQNAJ6bJbulBRht-4WCRd_uyUQ41xmDt-bmbwguGG0xxhN78cfWQ8o8B7nIKiUZ0EHmIQQeCTO_2YeXwZd71e0LUkZsKQT_AwQazJG5UxllmS4qe0OHWoyc2qFRWPdniijyavyvvpG8oBqU1q3OYQH6KulIZUh8_57-DaakqFRi3ULT7HYOiSZXZqqOWATa8IZOoe-cZVakwk2O-s-_XVwUaq1x-6pXwXzx-Esew7HL0-jrD8OC0ihCSMuEqkRKchUxzTCBCOIo5RpqZnQIAolEsYVClFGcZlqHfMFSzWVQiVAKb8K7o57a2e_tu0X-cpunWlP5pAySCOQCW9T9JgqnPXeYZnXrtoot88ZzQ-i81Z0fhCdn0S3yO0RqRDxXxySmEXAfwEhVnkD</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Yun</creator><creator>Huang, Chong</creator><creator>Chen, Gaojie</creator><creator>Song, Ruiliang</creator><creator>Song, Shutian</creator><creator>Xiao, Pei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2978-0365</orcidid><orcidid>https://orcid.org/0000-0002-0392-9398</orcidid><orcidid>https://orcid.org/0000-0002-3916-3355</orcidid><orcidid>https://orcid.org/0000-0002-7886-5878</orcidid></search><sort><creationdate>20240101</creationdate><title>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</title><author>Liu, Yun ; Huang, Chong ; Chen, Gaojie ; Song, Ruiliang ; Song, Shutian ; Xiao, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-43586dee0269d704e8e427491d6d15d25ca5813ae55f47f9dd73b19d065a82003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Beamforming</topic><topic>cognitive non-terrestrial network</topic><topic>Deep learning</topic><topic>Interference</topic><topic>Machine learning</topic><topic>physical layer security</topic><topic>Reconfigurable intelligent surface</topic><topic>Reflection</topic><topic>Reflection coefficient</topic><topic>Rician channels</topic><topic>Satellites</topic><topic>Signal to noise ratio</topic><topic>Trajectory optimization</topic><topic>unmanned aerial vehicle</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Huang, Chong</creatorcontrib><creatorcontrib>Chen, Gaojie</creatorcontrib><creatorcontrib>Song, Ruiliang</creatorcontrib><creatorcontrib>Song, Shutian</creatorcontrib><creatorcontrib>Xiao, Pei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yun</au><au>Huang, Chong</au><au>Chen, Gaojie</au><au>Song, Ruiliang</au><au>Song, Shutian</au><au>Xiao, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2023.3325066</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2978-0365</orcidid><orcidid>https://orcid.org/0000-0002-0392-9398</orcidid><orcidid>https://orcid.org/0000-0002-3916-3355</orcidid><orcidid>https://orcid.org/0000-0002-7886-5878</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2024-01, Vol.13 (1), p.1-1 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_proquest_journals_2912942683 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous aerial vehicles Beamforming cognitive non-terrestrial network Deep learning Interference Machine learning physical layer security Reconfigurable intelligent surface Reflection Reflection coefficient Rician channels Satellites Signal to noise ratio Trajectory optimization unmanned aerial vehicle Unmanned aerial vehicles |
title | Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Empowered%20Trajectory%20and%20Passive%20Beamforming%20Design%20in%20UAV-RIS%20Enabled%20Secure%20Cognitive%20Non-Terrestrial%20Networks&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Liu,%20Yun&rft.date=2024-01-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2023.3325066&rft_dat=%3Cproquest_RIE%3E2912942683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912942683&rft_id=info:pmid/&rft_ieee_id=10287142&rfr_iscdi=true |