Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks
This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2024-01, Vol.13 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes learning-based joint optimization of unmanned aerial vehicle (UAV) trajectory and reconfigurable intelligent surface (RIS) reflection coefficients in UAV-RIS-assisted cognitive non-terrestrial networks (NTNs) to enhance the secrecy performance. The practical RIS phase shift model, outdated channel state information (CSI) and interference from neighboring satellites are considered. We introduce a deep reinforcement learning (DRL) algorithm to solve the UAV trajectory optimization problem to enhance the gain from RIS. Furthermore, we propose a double cascade correlation network (DCCN) to adjust the RIS reflection coefficients in UAV trajectory optimization. Simulation results show that the proposed algorithms significantly improve the secrecy performance in UAV-RIS-assisted cognitive NTNs. |
---|---|
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2023.3325066 |