On the trivializability of rank-one cocycles with an invariant field of projective measures

Let G be S O ∘ ( n , 1 ) for n ⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space ( Ω , μ ) , consider a measurable cocycle σ : Γ × Ω → H ( κ ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mathematics 2024-03, Vol.10 (1), Article 8
1. Verfasser: Savini, Alessio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be S O ∘ ( n , 1 ) for n ⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space ( Ω , μ ) , consider a measurable cocycle σ : Γ × Ω → H ( κ ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pair ( H , κ ) , we show that if σ admits an equivariant field of probability measures on a suitable projective space, then σ is trivializable. An analogous result holds in the complex hyperbolic case.
ISSN:2199-675X
2199-6768
DOI:10.1007/s40879-023-00721-1