On the trivializability of rank-one cocycles with an invariant field of projective measures
Let G be S O ∘ ( n , 1 ) for n ⩾ 3 and consider a lattice Γ < G . Given a standard Borel probability Γ -space ( Ω , μ ) , consider a measurable cocycle σ : Γ × Ω → H ( κ ) , where H is a connected algebraic κ -group over a local field κ . Under the assumption of compatibility between G and the pa...
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2024-03, Vol.10 (1), Article 8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be
S
O
∘
(
n
,
1
)
for
n
⩾
3
and consider a lattice
Γ
<
G
. Given a standard Borel probability
Γ
-space
(
Ω
,
μ
)
, consider a measurable cocycle
σ
:
Γ
×
Ω
→
H
(
κ
)
, where
H
is a connected algebraic
κ
-group over a local field
κ
. Under the assumption of compatibility between
G
and the pair
(
H
,
κ
)
, we show that if
σ
admits an equivariant field of probability measures on a suitable projective space, then
σ
is trivializable. An analogous result holds in the complex hyperbolic case. |
---|---|
ISSN: | 2199-675X 2199-6768 |
DOI: | 10.1007/s40879-023-00721-1 |