A criterion for nilpotency in finite groups

For a positive integer n , we denote by π ( n ) the set of prime divisors of n . For a group G and a ∈ G , we denote by o ( a ) the order of the element a . We prove that a finite group G is nilpotent if and only if π ( o ( a b ) ) = π ( o ( a ) o ( b ) ) for all a , b ∈ G of coprime orders.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2024, Vol.122 (1), p.13-16
Hauptverfasser: Li, Binbin, Lu, Jiakuan, Pang, Linna, Zhang, Boru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a positive integer n , we denote by π ( n ) the set of prime divisors of n . For a group G and a ∈ G , we denote by o ( a ) the order of the element a . We prove that a finite group G is nilpotent if and only if π ( o ( a b ) ) = π ( o ( a ) o ( b ) ) for all a , b ∈ G of coprime orders.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-023-01925-3