Background Material Identification Using a Soft Robot

Soft robotics is an emerging technology that provides robots with the ability to adapt to the environment and safely interact with it. Here, the ability of these robots to identify the surface of interaction is critical for grasping and locomotion tasks. This paper describes the capability of a four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-01, Vol.13 (1), p.78
Hauptverfasser: Jeong, Nathan, Lee, Wooseop, Jeong, Seongcheol, Mahendran, Arun Niddish, Vikas, Vishesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft robotics is an emerging technology that provides robots with the ability to adapt to the environment and safely interact with it. Here, the ability of these robots to identify the surface of interaction is critical for grasping and locomotion tasks. This paper describes the capability of a four-limb soft robot that can identify background materials through the collection of reflection coefficients using an embedded antenna and machine learning techniques. The material of a soft-limb robot was characterized in terms of the relative permittivity and the loss tangent for the design of an antenna to collect reflection coefficients. A slot antenna was designed and embedded into a soft limb in order to extract five features in reflection coefficients including the resonant frequency, −3 dB bandwidth taken from the lowest S11, the value of the lowest S11, −3 dB bandwidth taken from the highest S11, and the number of resonant frequencies. A soft robot with the embedded antenna was tested on nine different background materials in an attempt to identify surrounding terrain information and a better robotic operation. The tested background materials included concrete, fabric, grass, gravel, metal, mulch, soil, water, and wood. The results showed that the robot was capable of distinguishing among the nine different materials with an average accuracy of 93.3% for the nine background materials using a bagged decision-tree-based ensemble method algorithm.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13010078