Allotropic transition of Dirac semimetal α-Sn to superconductor β-Sn induced by focused-ion-beam irradiation
Diamond-type structure allotrope α-Sn is attracting much attention as a topological Dirac semimetal (TDS). In this study, we demonstrate that α-Sn undergoes a phase transition to another allotrope β-Sn with superconductivity at low temperature by irradiating with a focused Ga ion beam (FIB). To clar...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-01, Vol.124 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diamond-type structure allotrope α-Sn is attracting much attention as a topological Dirac semimetal (TDS). In this study, we demonstrate that α-Sn undergoes a phase transition to another allotrope β-Sn with superconductivity at low temperature by irradiating with a focused Ga ion beam (FIB). To clarify the transition mechanism, we performed x-ray photoemission spectroscopy (XPS) measurements on an α-Sn thin film irradiated with FIB and an as-grown α-Sn thin film. The XPS results suggest that the local annealing, which is one of the side effects of FIB, causes the transformation from α-Sn into β-Sn. Furthermore, the difference in the chemical states between α-Sn and β-Sn can be quantitatively explained by the crystal structures rather than the degree of metallicity reflecting the conductivity. These results propose a way of fabricating TDS/superconductor in-plane heterostructures based on α-Sn and β-Sn. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0177343 |