Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification
Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we intro...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Deng, Jianan Wang, Qianli Liu, Nanqing |
description | Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we introduce a novel masked second-order pooling (MSoP) module to exploit the masked second-order features, enhancing feature representation and classification performance for FSRSSC. The MSoP module comprises two key components: a learnable DropBlock (LDB) and a compressed second-order pooling (CSoP). The LDB selectively masks discriminative regions in feature maps, effectively alleviating the low intraclass similarity problem. On the other hand, the CSoP enhances second-order statistics by computing and aggregating channel-wise similarity, thereby reducing the impact of interclass similarity. We construct an MSoP-Net based on the proposed MSoP module. Experimental results demonstrate its superior performance on two widely used datasets, that is, NWPU-RESISC45 and UCM. |
doi_str_mv | 10.1109/LGRS.2023.3344840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2911489017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10366317</ieee_id><sourcerecordid>2911489017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c5f65e364cdcbb6a9608465c6334d501dc808f4a96115fb838626afd2ca0595e3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKsfQPCw4Dk12fxp9ijFVmGl0lXwFtLsRLe2m5psEb-9WbYHTzPMvPdm-CF0TcmEUlLclYtVNclJziaMca44OUEjKoTCREzpad9zgUWh3s_RRYwbQnKu1HSEymcTv6DOKrC-rfEy1BCyF--3TfuROR-yOfzg6tN32Qp2vgNcQRv7XWWhhWy2NTE2rrGma3x7ic6c2Ua4OtYxeps_vM4ecblcPM3uS2xzLjtshZMCmOS2tuu1NIUkikthZXq9FoTWVhHleJpTKtxaMSVzaVydW0NEkZxjdDvk7oP_PkDs9MYfQptO6ryglKuC0GlS0UFlg48xgNP70OxM-NWU6B6a7qHpHpo-Qkuem8HTAMA_PZOSpcg_IpRnmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911489017</pqid></control><display><type>article</type><title>Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Deng, Jianan ; Wang, Qianli ; Liu, Nanqing</creator><creatorcontrib>Deng, Jianan ; Wang, Qianli ; Liu, Nanqing</creatorcontrib><description>Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we introduce a novel masked second-order pooling (MSoP) module to exploit the masked second-order features, enhancing feature representation and classification performance for FSRSSC. The MSoP module comprises two key components: a learnable DropBlock (LDB) and a compressed second-order pooling (CSoP). The LDB selectively masks discriminative regions in feature maps, effectively alleviating the low intraclass similarity problem. On the other hand, the CSoP enhances second-order statistics by computing and aggregating channel-wise similarity, thereby reducing the impact of interclass similarity. We construct an MSoP-Net based on the proposed MSoP module. Experimental results demonstrate its superior performance on two widely used datasets, that is, NWPU-RESISC45 and UCM.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3344840</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Convolution ; DropBlock ; Feature extraction ; Feature maps ; few-shot learning (FSL) ; Modules ; Prototypes ; Remote sensing ; remote-sensing image (RSI) ; remote-sensing scene classification (RSSC) ; Scene classification ; second-order pooling (SoP) ; Similarity ; Task analysis ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c5f65e364cdcbb6a9608465c6334d501dc808f4a96115fb838626afd2ca0595e3</cites><orcidid>0009-0001-9212-5542 ; 0000-0001-7564-4896 ; 0000-0001-5834-2087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10366317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10366317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, Jianan</creatorcontrib><creatorcontrib>Wang, Qianli</creatorcontrib><creatorcontrib>Liu, Nanqing</creatorcontrib><title>Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we introduce a novel masked second-order pooling (MSoP) module to exploit the masked second-order features, enhancing feature representation and classification performance for FSRSSC. The MSoP module comprises two key components: a learnable DropBlock (LDB) and a compressed second-order pooling (CSoP). The LDB selectively masks discriminative regions in feature maps, effectively alleviating the low intraclass similarity problem. On the other hand, the CSoP enhances second-order statistics by computing and aggregating channel-wise similarity, thereby reducing the impact of interclass similarity. We construct an MSoP-Net based on the proposed MSoP module. Experimental results demonstrate its superior performance on two widely used datasets, that is, NWPU-RESISC45 and UCM.</description><subject>Classification</subject><subject>Convolution</subject><subject>DropBlock</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>few-shot learning (FSL)</subject><subject>Modules</subject><subject>Prototypes</subject><subject>Remote sensing</subject><subject>remote-sensing image (RSI)</subject><subject>remote-sensing scene classification (RSSC)</subject><subject>Scene classification</subject><subject>second-order pooling (SoP)</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKsfQPCw4Dk12fxp9ijFVmGl0lXwFtLsRLe2m5psEb-9WbYHTzPMvPdm-CF0TcmEUlLclYtVNclJziaMca44OUEjKoTCREzpad9zgUWh3s_RRYwbQnKu1HSEymcTv6DOKrC-rfEy1BCyF--3TfuROR-yOfzg6tN32Qp2vgNcQRv7XWWhhWy2NTE2rrGma3x7ic6c2Ua4OtYxeps_vM4ecblcPM3uS2xzLjtshZMCmOS2tuu1NIUkikthZXq9FoTWVhHleJpTKtxaMSVzaVydW0NEkZxjdDvk7oP_PkDs9MYfQptO6ryglKuC0GlS0UFlg48xgNP70OxM-NWU6B6a7qHpHpo-Qkuem8HTAMA_PZOSpcg_IpRnmg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Deng, Jianan</creator><creator>Wang, Qianli</creator><creator>Liu, Nanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-9212-5542</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0001-5834-2087</orcidid></search><sort><creationdate>2024</creationdate><title>Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification</title><author>Deng, Jianan ; Wang, Qianli ; Liu, Nanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c5f65e364cdcbb6a9608465c6334d501dc808f4a96115fb838626afd2ca0595e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>DropBlock</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>few-shot learning (FSL)</topic><topic>Modules</topic><topic>Prototypes</topic><topic>Remote sensing</topic><topic>remote-sensing image (RSI)</topic><topic>remote-sensing scene classification (RSSC)</topic><topic>Scene classification</topic><topic>second-order pooling (SoP)</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Jianan</creatorcontrib><creatorcontrib>Wang, Qianli</creatorcontrib><creatorcontrib>Liu, Nanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Jianan</au><au>Wang, Qianli</au><au>Liu, Nanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we introduce a novel masked second-order pooling (MSoP) module to exploit the masked second-order features, enhancing feature representation and classification performance for FSRSSC. The MSoP module comprises two key components: a learnable DropBlock (LDB) and a compressed second-order pooling (CSoP). The LDB selectively masks discriminative regions in feature maps, effectively alleviating the low intraclass similarity problem. On the other hand, the CSoP enhances second-order statistics by computing and aggregating channel-wise similarity, thereby reducing the impact of interclass similarity. We construct an MSoP-Net based on the proposed MSoP module. Experimental results demonstrate its superior performance on two widely used datasets, that is, NWPU-RESISC45 and UCM.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3344840</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0001-9212-5542</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0001-5834-2087</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2911489017 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Convolution DropBlock Feature extraction Feature maps few-shot learning (FSL) Modules Prototypes Remote sensing remote-sensing image (RSI) remote-sensing scene classification (RSSC) Scene classification second-order pooling (SoP) Similarity Task analysis Training |
title | Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Masked%20Second-Order%20Pooling%20for%20Few-Shot%20Remote-Sensing%20Scene%20Classification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Deng,%20Jianan&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3344840&rft_dat=%3Cproquest_RIE%3E2911489017%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911489017&rft_id=info:pmid/&rft_ieee_id=10366317&rfr_iscdi=true |