Masked Second-Order Pooling for Few-Shot Remote-Sensing Scene Classification

Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Deng, Jianan, Wang, Qianli, Liu, Nanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Few-shot remote-sensing scene classification (FSRSSC) is the task of categorizing remote-sensing images (RSIs) with insufficient labeled samples. This task becomes particularly challenging due to low intraclass similarity and high interclass similarity in RSIs. To overcome these challenges, we introduce a novel masked second-order pooling (MSoP) module to exploit the masked second-order features, enhancing feature representation and classification performance for FSRSSC. The MSoP module comprises two key components: a learnable DropBlock (LDB) and a compressed second-order pooling (CSoP). The LDB selectively masks discriminative regions in feature maps, effectively alleviating the low intraclass similarity problem. On the other hand, the CSoP enhances second-order statistics by computing and aggregating channel-wise similarity, thereby reducing the impact of interclass similarity. We construct an MSoP-Net based on the proposed MSoP module. Experimental results demonstrate its superior performance on two widely used datasets, that is, NWPU-RESISC45 and UCM.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2023.3344840