Nonlinear degenerate Navier problem involving the weighted biharmonic operator with measure data in weighted Sobolev spaces
In this paper, we prove the existence and uniqueness of weak solution for a nonlinear degenerate Navier problem involving the weighted biharmonic operator of the following form: Δ [ ϕ ( z ) a ( z , Δ w ) ] - div [ ϑ 1 ( z ) K ( z , ∇ w ) + ϑ 2 ( z ) L ( z , w , ∇ w ) ] + ϑ 2 ( z ) L 0 ( z , w , ∇ w...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2024-03, Vol.30 (1), Article 13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove the existence and uniqueness of weak solution for a nonlinear degenerate Navier problem involving the weighted biharmonic operator of the following form:
Δ
[
ϕ
(
z
)
a
(
z
,
Δ
w
)
]
-
div
[
ϑ
1
(
z
)
K
(
z
,
∇
w
)
+
ϑ
2
(
z
)
L
(
z
,
w
,
∇
w
)
]
+
ϑ
2
(
z
)
L
0
(
z
,
w
,
∇
w
)
=
h
0
-
∑
j
=
1
n
D
j
h
j
,
where
ϕ
,
ϑ
1
and
ϑ
2
are weight functions,
a
:
D
¯
×
R
n
⟶
R
n
,
K
:
D
×
R
n
⟶
R
n
,
L
:
D
×
R
×
R
n
⟶
R
n
, and
L
0
:
D
×
R
×
R
n
⟶
R
are Carathéodory applications that verified some conditions, and
h
0
∈
L
1
(
D
)
and
h
j
∈
L
p
′
(
D
,
ϑ
1
1
-
p
′
)
(
j
=
1
,
…
,
n
)
. |
---|---|
ISSN: | 1405-213X 2296-4495 |
DOI: | 10.1007/s40590-023-00587-z |