Hydrogen charging of carbon and low alloy steel by electrochemical methods

Atomic hydrogen can be the result of different processes like electroplating, chemical and electrochemical pickling treatments, in welding or by cathodic processes in corrosive fluids. Moreover, adsorption of atomic hydrogen can affect materials in contact with high pressure gaseous hydrogen. Once e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2024, Vol.54 (1), p.103-114
Hauptverfasser: Bolzoni, Fabio, Paterlini, Luca, Casanova, Luca, Ormellese, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic hydrogen can be the result of different processes like electroplating, chemical and electrochemical pickling treatments, in welding or by cathodic processes in corrosive fluids. Moreover, adsorption of atomic hydrogen can affect materials in contact with high pressure gaseous hydrogen. Once entered the material, atomic hydrogen interacts with the metal structure and may produce a “damage” of various forms, such as Hydrogen Induced Cracking (HIC), delayed fracture, blistering and hydrogen embrittlement. In particular, when H 2 S is present (“sour service”), metallic materials, such as carbon and low alloy steels, may suffer hydrogen damage and hydrogen embrittlement. Sour service materials must be used in compliance with international accepted standards, used worldwide in oil and gas activities, when fluids are classified as sour. The present study has been carried out in order to set up an electrochemical method to charge with hydrogen two typical pipeline materials, carbon and low alloy steels. The reason of the use of an electrochemical method is to avoid any critical conditions from the point of view of preparation, safety and disposal. Hydrogen content in the specimens was measured by two different methods: hot glycerol bath and Inert Gas Fusion (IGF) analysis. Hydrogen content in the specimens is about 0.6–2 ppm; mechanical performances were assessed by means of J integral tests: a pronounced decrease of fracture toughness was observed for H charged specimens. Graphical Abstract
ISSN:0021-891X
1572-8838
DOI:10.1007/s10800-023-01942-8