Development and analysis of massive parallelization of a lattice basis reduction algorithm
The security of lattice-based cryptography relies on the hardness of solving lattice problems. Lattice basis reduction is a strong tool for solving lattice problems, and the block Korkine–Zolotarev (BKZ) reduction algorithm is the de facto standard in cryptanalysis. We propose a parallel algorithm o...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2024-01, Vol.41 (1), p.13-56 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The security of lattice-based cryptography relies on the hardness of solving lattice problems. Lattice basis reduction is a strong tool for solving lattice problems, and the block Korkine–Zolotarev (BKZ) reduction algorithm is the de facto standard in cryptanalysis. We propose a parallel algorithm of BKZ-type reduction based on randomization. Randomized copies of an input lattice basis are independently reduced in parallel, while several basis vectors are shared asynchronously among all processes. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes might work on the same problem, which diminishes the benefit of parallelization. To monitor the balance between randomness and sharing, we propose a new metric to quantify the variety of lattice bases, and we empirically find an optimal parameter of sharing for high-dimensional lattices. We also demonstrate the effectiveness of our parallel algorithm and metric through experiments from multiple perspectives. |
---|---|
ISSN: | 0916-7005 1868-937X |
DOI: | 10.1007/s13160-023-00580-z |