Hypergeometric functions over finite fields
We give a definition of generalized hypergeometric functions over finite fields using modified Gauss sums, which enables us to find clear analogy with classical hypergeometric functions over the complex numbers. We study their fundamental properties and prove summation formulas, transformation formu...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024, Vol.63 (1), p.55-104 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a definition of generalized hypergeometric functions over finite fields using modified Gauss sums, which enables us to find clear analogy with classical hypergeometric functions over the complex numbers. We study their fundamental properties and prove summation formulas, transformation formulas and product formulas. An application to zeta functions of K3-surfaces is given. In the appendix, we give an elementary proof of the Davenport–Hasse multiplication formula for Gauss sums. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-023-00777-3 |