Hamiltonian systems involving exponential growth in R2 with general nonlinearities

In this work, we establish the existence of ground state solution for Hamiltonian systems of the form - Δ u + V ( x ) u = H v ( x , u , v ) , x ∈ R 2 , - Δ v + V ( x ) v = H u ( x , u , v ) , x ∈ R 2 , where V ∈ C ( R 2 , ( 0 , ∞ ) ) and H ∈ C 1 ( R 2 × R 2 , R ) is allowed to have an exponential gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1)
Hauptverfasser: Severo, Uberlandio B., Souza, Manassés de, Menezes, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 118
creator Severo, Uberlandio B.
Souza, Manassés de
Menezes, Marta
description In this work, we establish the existence of ground state solution for Hamiltonian systems of the form - Δ u + V ( x ) u = H v ( x , u , v ) , x ∈ R 2 , - Δ v + V ( x ) v = H u ( x , u , v ) , x ∈ R 2 , where V ∈ C ( R 2 , ( 0 , ∞ ) ) and H ∈ C 1 ( R 2 × R 2 , R ) is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where V and H are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality.
doi_str_mv 10.1007/s13398-023-01542-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2910501930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910501930</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-6a4fedfd475ad83357e337dec9db786878b5f5f2fcba66467a88c87a52f39a8c3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGr_gKcFz9FkZ7PJHqWoFQpC0XNId5Oask3WJG3135t2BecyD-YxM-9D6JaSe0oIf4gUoBGYlIAJZVWJ4QJNKOMNpoywy7MWmAOBazSLcUtyAa0E4RO0Wqid7ZN3Vrki_sSkd7Gw7uD7g3WbQn8P3mmXrOqLTfDH9JmHxaosjjbLjXY65InzrrdOq2CT1fEGXRnVRz3761P08fz0Pl_g5dvL6_xxiYf8T8K1qozuTFdxpjoBwLgG4J1um27NRS24WDPDTGnatarrquZKiFZwxUoDjRItTNHduHcI_muvY5Jbvw8un5RlQwkjtMmRpwhGVxxCTqTDv4sSeeInR34y85NnfhLgFzlrZH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910501930</pqid></control><display><type>article</type><title>Hamiltonian systems involving exponential growth in R2 with general nonlinearities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Severo, Uberlandio B. ; Souza, Manassés de ; Menezes, Marta</creator><creatorcontrib>Severo, Uberlandio B. ; Souza, Manassés de ; Menezes, Marta</creatorcontrib><description>In this work, we establish the existence of ground state solution for Hamiltonian systems of the form - Δ u + V ( x ) u = H v ( x , u , v ) , x ∈ R 2 , - Δ v + V ( x ) v = H u ( x , u , v ) , x ∈ R 2 , where V ∈ C ( R 2 , ( 0 , ∞ ) ) and H ∈ C 1 ( R 2 × R 2 , R ) is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where V and H are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-023-01542-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Hamiltonian functions ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Original Paper ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1)</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-6a4fedfd475ad83357e337dec9db786878b5f5f2fcba66467a88c87a52f39a8c3</cites><orcidid>0000-0003-4984-1858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-023-01542-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-023-01542-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Severo, Uberlandio B.</creatorcontrib><creatorcontrib>Souza, Manassés de</creatorcontrib><creatorcontrib>Menezes, Marta</creatorcontrib><title>Hamiltonian systems involving exponential growth in R2 with general nonlinearities</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>In this work, we establish the existence of ground state solution for Hamiltonian systems of the form - Δ u + V ( x ) u = H v ( x , u , v ) , x ∈ R 2 , - Δ v + V ( x ) v = H u ( x , u , v ) , x ∈ R 2 , where V ∈ C ( R 2 , ( 0 , ∞ ) ) and H ∈ C 1 ( R 2 × R 2 , R ) is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where V and H are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality.</description><subject>Applications of Mathematics</subject><subject>Hamiltonian functions</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGr_gKcFz9FkZ7PJHqWoFQpC0XNId5Oask3WJG3135t2BecyD-YxM-9D6JaSe0oIf4gUoBGYlIAJZVWJ4QJNKOMNpoywy7MWmAOBazSLcUtyAa0E4RO0Wqid7ZN3Vrki_sSkd7Gw7uD7g3WbQn8P3mmXrOqLTfDH9JmHxaosjjbLjXY65InzrrdOq2CT1fEGXRnVRz3761P08fz0Pl_g5dvL6_xxiYf8T8K1qozuTFdxpjoBwLgG4J1um27NRS24WDPDTGnatarrquZKiFZwxUoDjRItTNHduHcI_muvY5Jbvw8un5RlQwkjtMmRpwhGVxxCTqTDv4sSeeInR34y85NnfhLgFzlrZH0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Severo, Uberlandio B.</creator><creator>Souza, Manassés de</creator><creator>Menezes, Marta</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4984-1858</orcidid></search><sort><creationdate>2024</creationdate><title>Hamiltonian systems involving exponential growth in R2 with general nonlinearities</title><author>Severo, Uberlandio B. ; Souza, Manassés de ; Menezes, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-6a4fedfd475ad83357e337dec9db786878b5f5f2fcba66467a88c87a52f39a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Hamiltonian functions</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Severo, Uberlandio B.</creatorcontrib><creatorcontrib>Souza, Manassés de</creatorcontrib><creatorcontrib>Menezes, Marta</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Severo, Uberlandio B.</au><au>Souza, Manassés de</au><au>Menezes, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian systems involving exponential growth in R2 with general nonlinearities</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2024</date><risdate>2024</risdate><volume>118</volume><issue>1</issue><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In this work, we establish the existence of ground state solution for Hamiltonian systems of the form - Δ u + V ( x ) u = H v ( x , u , v ) , x ∈ R 2 , - Δ v + V ( x ) v = H u ( x , u , v ) , x ∈ R 2 , where V ∈ C ( R 2 , ( 0 , ∞ ) ) and H ∈ C 1 ( R 2 × R 2 , R ) is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where V and H are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-023-01542-3</doi><orcidid>https://orcid.org/0000-0003-4984-1858</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1)
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2910501930
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Hamiltonian functions
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinearity
Original Paper
Theoretical
title Hamiltonian systems involving exponential growth in R2 with general nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20systems%20involving%20exponential%20growth%20in%20R2%20with%20general%20nonlinearities&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Severo,%20Uberlandio%20B.&rft.date=2024&rft.volume=118&rft.issue=1&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-023-01542-3&rft_dat=%3Cproquest_sprin%3E2910501930%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910501930&rft_id=info:pmid/&rfr_iscdi=true