Hamiltonian systems involving exponential growth in R2 with general nonlinearities
In this work, we establish the existence of ground state solution for Hamiltonian systems of the form - Δ u + V ( x ) u = H v ( x , u , v ) , x ∈ R 2 , - Δ v + V ( x ) v = H u ( x , u , v ) , x ∈ R 2 , where V ∈ C ( R 2 , ( 0 , ∞ ) ) and H ∈ C 1 ( R 2 × R 2 , R ) is allowed to have an exponential gr...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024, Vol.118 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we establish the existence of ground state solution for Hamiltonian systems of the form
-
Δ
u
+
V
(
x
)
u
=
H
v
(
x
,
u
,
v
)
,
x
∈
R
2
,
-
Δ
v
+
V
(
x
)
v
=
H
u
(
x
,
u
,
v
)
,
x
∈
R
2
,
where
V
∈
C
(
R
2
,
(
0
,
∞
)
)
and
H
∈
C
1
(
R
2
×
R
2
,
R
)
is allowed to have an exponential growth with respect to the Trudinger–Moser inequality. We study the case where
V
and
H
are periodic or asymptotically periodic. In the proof of the main results, we have used a reduction method involving the generalized Nehari manifold and also a linking theorem. In our approach, as we deal with general nonlinearities, it was necessary to obtain a new version of the Trudinger–Moser inequality. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-023-01542-3 |