Z3 and (×Z3)3 symmetry protected topological paramagnets

A bstract We identify two-dimensional three-state Potts paramagnets with gapless edge modes on a triangular lattice protected by (× Z 3 ) 3 ≡ Z 3 × Z 3 × Z 3 symmetry and smaller Z 3 symmetry. We derive microscopic models for the gapless edge, uncover their symmetries and analyze the conformal prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-12, Vol.2023 (12), p.199, Article 199
Hauptverfasser: Topchyan, Hrant, Iugov, Vasilii, Mirumyan, Mkhitar, Khachatryan, Shahane, Hakobyan, Tigran, Sedrakyan, Tigran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We identify two-dimensional three-state Potts paramagnets with gapless edge modes on a triangular lattice protected by (× Z 3 ) 3 ≡ Z 3 × Z 3 × Z 3 symmetry and smaller Z 3 symmetry. We derive microscopic models for the gapless edge, uncover their symmetries and analyze the conformal properties. We study the properties of the gapless edge by employing the numerical density-matrix renormalization group (DMRG) simulation and exact diagonalization. We discuss the corresponding conformal field theory, its central charge, and the scaling dimension of the corresponding primary field. We argue, that the low energy limit of our edge modes defined by the SU k (3)/ SU k (2) coset conformal field theory with the level k = 2. The discussed two-dimensional models realize a variety of symmetry-protected topological phases, opening a window for studies of the unconventional quantum criticalities between them.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2023)199