G-displays of Hodge type and formal p-divisible groups
Let G be a reductive group scheme over the p -adic integers, and let μ be a minuscule cocharacter for G . In the Hodge-type case, we construct a functor from nilpotent ( G , μ ) -displays over p -nilpotent rings R to formal p -divisible groups over R equipped with crystalline Tate tensors. When R /...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2024, Vol.173 (1-2), p.45-117 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a reductive group scheme over the
p
-adic integers, and let
μ
be a minuscule cocharacter for
G
. In the Hodge-type case, we construct a functor from nilpotent
(
G
,
μ
)
-displays over
p
-nilpotent rings
R
to formal
p
-divisible groups over
R
equipped with crystalline Tate tensors. When
R
/
pR
has a
p
-basis étale locally, we show that this defines an equivalence between the two categories. The definition of the functor relies on the construction of a
G
-crystal associated with any adjoint nilpotent
(
G
,
μ
)
-display, which extends the construction of the Dieudonné crystal associated with a nilpotent Zink display. As an application, we obtain an explicit comparison between the Rapoport-Zink functors of Hodge type defined by Kim and by Bültel and Pappas. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-023-01471-w |