A Generalized Motion Control Framework of Dielectric Elastomer Actuators: Dynamic Modeling, Sliding-Mode Control and Experimental Evaluation

The continuous electromechanical deformation of dielectric elastomer actuators (DEAs) suffers from rate-dependent viscoelasticity, mechanical vibration, and configuration dependency, making the generalized dynamic modeling and precise control elusive. In this work, we present a generalized motion co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2024, Vol.40, p.919-935
Hauptverfasser: Zou, Jiang, Kassim, Shakiru Olajide, Ren, Jieji, Vaziri, Vahid, Aphale, Sumeet S., Gu, Guoying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The continuous electromechanical deformation of dielectric elastomer actuators (DEAs) suffers from rate-dependent viscoelasticity, mechanical vibration, and configuration dependency, making the generalized dynamic modeling and precise control elusive. In this work, we present a generalized motion control framework for DEAs capable of accommodating different configurations, materials and degrees of freedom (DOFs). First, a generalized, control-enabling dynamic model is developed for DEAs by taking both nonlinear electromechanical coupling, mechanical vibration and rate-dependent viscoelasticity into consideration. Further, a state observer is introduced to predict the unobservable viscoelasticity. Then, an enhanced exponential reaching law-based sliding-mode controller (EERLSMC) is proposed to minimize the viscoelasticity of DEAs. Its stability is also proved mathematically. The experimental results obtained for different DEAs (four configurations, two materials, and multi-DOFs) demonstrate that our dynamic model can precisely describe their complex dynamic responses and the EERLSMC can achieve precise tracking control; verifying the generality and versatility of our motion control framework.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2023.3338973