Feature Stores: A Key Enabler for Feature Reusability and Availability Across Machine Learning Pipelines
This article presents a technical analysis of the feature store (FS) from the perspective of machine learning (ML) model development and highlights its potential benefits. We propose key considerations in developing a workable and efficient FS for ML pipelines.
Gespeichert in:
Veröffentlicht in: | Computer (Long Beach, Calif.) Calif.), 2024-01, Vol.57 (1), p.69-74 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a technical analysis of the feature store (FS) from the perspective of machine learning (ML) model development and highlights its potential benefits. We propose key considerations in developing a workable and efficient FS for ML pipelines. |
---|---|
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2023.3308868 |