Early events in the mechanism of single-source chemical vapor deposition of zirconium and hafnium diboride: a computational investigation

Chemical vapor deposition (CVD) of group 4 metal-diboride ceramics from a single source is a versatile technique that finds many applications from hypersonic flight to microelectronics. Though the kinetics of CVD have been studied extensively-allowing significant process improvements-a mechanistic u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-01, Vol.26 (2), p.1217-1224
Hauptverfasser: Prokvolit, Sergei, Mao, Erqian, Gray, Thomas G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical vapor deposition (CVD) of group 4 metal-diboride ceramics from a single source is a versatile technique that finds many applications from hypersonic flight to microelectronics. Though the kinetics of CVD have been studied extensively-allowing significant process improvements-a mechanistic understanding of the process has yet to be attained. Computations suggest two plausible reaction pathways-one higher-energy and the second lower-that correlate well with experimental results reported in the literature, explaining phenomena such as high-temperature deposition resulting in films overstoichiometric in boron. These insights offer a new perspective that may be instrumental in the rational design of new precursors for single-source CVD. Chemical vapor deposition (CVD) of group 4 metal-diboride ceramics from a single source is a versatile technique that finds many applications from hypersonic flight to microelectronics.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp05385g