A relaxation viewpoint to Unbalanced Optimal Transport: duality, optimality and Monge formulation
We present a general convex relaxation approach to study a wide class of Unbalanced Optimal Transport problems for finite non-negative measures with possibly different masses. These are obtained as the lower semicontinuous and convex envelope of a cost for non-negative Dirac masses. New general prim...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a general convex relaxation approach to study a wide class of Unbalanced Optimal Transport problems for finite non-negative measures with possibly different masses. These are obtained as the lower semicontinuous and convex envelope of a cost for non-negative Dirac masses. New general primal-dual formulations, optimality conditions, and metric-topological properties are carefully studied and discussed. |
---|---|
ISSN: | 2331-8422 |