Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements

The Hofmann and Curtius rearrangements have been widely used in organic synthesis and developed for the industrial production (5-100 kg) of pharmaceutically relevant amines/amides. However, the existing use of a stoichiometric organic oxidant [(diacetoxyiodo)benzene or trichloroisocyanuric acid for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2024-01, Vol.26 (1), p.428-438
Hauptverfasser: Song, Liyan, Meng, Yufei, Zhao, Tongchao, Liu, Lifang, Pan, Xiaohong, Huang, Binbin, Yao, Hongliang, Lin, Ran, Tong, Rongbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 1
container_start_page 428
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 26
creator Song, Liyan
Meng, Yufei
Zhao, Tongchao
Liu, Lifang
Pan, Xiaohong
Huang, Binbin
Yao, Hongliang
Lin, Ran
Tong, Rongbiao
description The Hofmann and Curtius rearrangements have been widely used in organic synthesis and developed for the industrial production (5-100 kg) of pharmaceutically relevant amines/amides. However, the existing use of a stoichiometric organic oxidant [(diacetoxyiodo)benzene or trichloroisocyanuric acid for the Hofmann rearrangement] for amides or an activating reagent (diphenylphosphoryl azide for the Curtius rearrangement) for carboxylic acids is environmentally unfriendly and economically less attractive. Herein, we report the first green oxidation of amides and aldehydes with oxone and halide (and NaN 3 ) to generate N -halo amides and acyl azides, respectively, both of which rearrange into the common isocyanate intermediates and subsequently produce stable carbamates or ureas (the Hofmann and Curtius rearrangements) when trapped with alcohols or amines. This unified green approach is highly efficient as demonstrated by more than 30 examples for each rearrangement. Importantly, this approach generates inorganic nontoxic K 2 SO 4 as the only byproduct, which is advantageous over the existing methods that produced stoichiometric, toxic, and organic iodobenzene, and chloro-isocyanuric acid, or diphenylphosphoric acid. Notably, three urea-based drugs and eight chiral urea catalysts were efficiently synthesized from corresponding aldehydes by this green oxidative Curtius rearrangement. This green oxidative approach for the Hofmann and Curtius rearrangements is expected to find wide applications in organic synthesis and process chemistry. The oxone-halide green oxidation system is extended to the oxidation of primary amides and aromatic aldehydes (with sodium azide) to generate N -haloamide and acyl azides, respectively, for subsequent Hofmann and Curtius rearrangements.
doi_str_mv 10.1039/d3gc04355j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2908338006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908338006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-981debbd4652f923d0a41f95c31c4033bf3110505477d54712dd80846979e2c43</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWKsb90LAnTB685hHljJqVQpu7NYhzaNN6SQ1mQH77522Ujf3nsv5uAcOQtcE7gkw8aDZQgFneb46QSPCC5YJWsLpURf0HF2ktAIgpCz4CH3NvLPOaCy9xotojMfhx2nZuTAoi2XrtEl7V661WW53lw0Rd0uDX4Ntpfd7t-5j5_qEo5ExSr8wrfFdukRnVq6TufrbYzR7ef6sX7Ppx-Stfpxmilaky0RFtJnPNS9yagVlGiQnVuSKEcWBsbllhEAOOS9LPQxCta6g4oUohaGKszG6PfzdxPDdm9Q1q9BHP0Q2VEDFWAVQDNTdgVIxpBSNbTbRtTJuGwLNrr_miU3qfX_vA3xzgGNSR-6_X_YLytZroA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908338006</pqid></control><display><type>article</type><title>Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Song, Liyan ; Meng, Yufei ; Zhao, Tongchao ; Liu, Lifang ; Pan, Xiaohong ; Huang, Binbin ; Yao, Hongliang ; Lin, Ran ; Tong, Rongbiao</creator><creatorcontrib>Song, Liyan ; Meng, Yufei ; Zhao, Tongchao ; Liu, Lifang ; Pan, Xiaohong ; Huang, Binbin ; Yao, Hongliang ; Lin, Ran ; Tong, Rongbiao</creatorcontrib><description>The Hofmann and Curtius rearrangements have been widely used in organic synthesis and developed for the industrial production (5-100 kg) of pharmaceutically relevant amines/amides. However, the existing use of a stoichiometric organic oxidant [(diacetoxyiodo)benzene or trichloroisocyanuric acid for the Hofmann rearrangement] for amides or an activating reagent (diphenylphosphoryl azide for the Curtius rearrangement) for carboxylic acids is environmentally unfriendly and economically less attractive. Herein, we report the first green oxidation of amides and aldehydes with oxone and halide (and NaN 3 ) to generate N -halo amides and acyl azides, respectively, both of which rearrange into the common isocyanate intermediates and subsequently produce stable carbamates or ureas (the Hofmann and Curtius rearrangements) when trapped with alcohols or amines. This unified green approach is highly efficient as demonstrated by more than 30 examples for each rearrangement. Importantly, this approach generates inorganic nontoxic K 2 SO 4 as the only byproduct, which is advantageous over the existing methods that produced stoichiometric, toxic, and organic iodobenzene, and chloro-isocyanuric acid, or diphenylphosphoric acid. Notably, three urea-based drugs and eight chiral urea catalysts were efficiently synthesized from corresponding aldehydes by this green oxidative Curtius rearrangement. This green oxidative approach for the Hofmann and Curtius rearrangements is expected to find wide applications in organic synthesis and process chemistry. The oxone-halide green oxidation system is extended to the oxidation of primary amides and aromatic aldehydes (with sodium azide) to generate N -haloamide and acyl azides, respectively, for subsequent Hofmann and Curtius rearrangements.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc04355j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohols ; Aldehydes ; Amides ; Amines ; Azides (inorganic) ; Benzene ; Carbamates (tradename) ; Carboxylic acids ; Catalysts ; Chemical synthesis ; Green chemistry ; Hofmann rearrangement ; Industrial production ; Intermediates ; Isocyanates ; Oxidants ; Oxidation ; Oxidizing agents ; Potassium sulfate ; Reagents ; Sodium azide ; Sodium azides ; Stoichiometry ; Urea ; Ureas</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-01, Vol.26 (1), p.428-438</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-981debbd4652f923d0a41f95c31c4033bf3110505477d54712dd80846979e2c43</citedby><cites>FETCH-LOGICAL-c281t-981debbd4652f923d0a41f95c31c4033bf3110505477d54712dd80846979e2c43</cites><orcidid>0000-0002-2740-5222 ; 0000-0002-8977-3127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Song, Liyan</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Zhao, Tongchao</creatorcontrib><creatorcontrib>Liu, Lifang</creatorcontrib><creatorcontrib>Pan, Xiaohong</creatorcontrib><creatorcontrib>Huang, Binbin</creatorcontrib><creatorcontrib>Yao, Hongliang</creatorcontrib><creatorcontrib>Lin, Ran</creatorcontrib><creatorcontrib>Tong, Rongbiao</creatorcontrib><title>Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The Hofmann and Curtius rearrangements have been widely used in organic synthesis and developed for the industrial production (5-100 kg) of pharmaceutically relevant amines/amides. However, the existing use of a stoichiometric organic oxidant [(diacetoxyiodo)benzene or trichloroisocyanuric acid for the Hofmann rearrangement] for amides or an activating reagent (diphenylphosphoryl azide for the Curtius rearrangement) for carboxylic acids is environmentally unfriendly and economically less attractive. Herein, we report the first green oxidation of amides and aldehydes with oxone and halide (and NaN 3 ) to generate N -halo amides and acyl azides, respectively, both of which rearrange into the common isocyanate intermediates and subsequently produce stable carbamates or ureas (the Hofmann and Curtius rearrangements) when trapped with alcohols or amines. This unified green approach is highly efficient as demonstrated by more than 30 examples for each rearrangement. Importantly, this approach generates inorganic nontoxic K 2 SO 4 as the only byproduct, which is advantageous over the existing methods that produced stoichiometric, toxic, and organic iodobenzene, and chloro-isocyanuric acid, or diphenylphosphoric acid. Notably, three urea-based drugs and eight chiral urea catalysts were efficiently synthesized from corresponding aldehydes by this green oxidative Curtius rearrangement. This green oxidative approach for the Hofmann and Curtius rearrangements is expected to find wide applications in organic synthesis and process chemistry. The oxone-halide green oxidation system is extended to the oxidation of primary amides and aromatic aldehydes (with sodium azide) to generate N -haloamide and acyl azides, respectively, for subsequent Hofmann and Curtius rearrangements.</description><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Amides</subject><subject>Amines</subject><subject>Azides (inorganic)</subject><subject>Benzene</subject><subject>Carbamates (tradename)</subject><subject>Carboxylic acids</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Green chemistry</subject><subject>Hofmann rearrangement</subject><subject>Industrial production</subject><subject>Intermediates</subject><subject>Isocyanates</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Potassium sulfate</subject><subject>Reagents</subject><subject>Sodium azide</subject><subject>Sodium azides</subject><subject>Stoichiometry</subject><subject>Urea</subject><subject>Ureas</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWKsb90LAnTB685hHljJqVQpu7NYhzaNN6SQ1mQH77522Ujf3nsv5uAcOQtcE7gkw8aDZQgFneb46QSPCC5YJWsLpURf0HF2ktAIgpCz4CH3NvLPOaCy9xotojMfhx2nZuTAoi2XrtEl7V661WW53lw0Rd0uDX4Ntpfd7t-5j5_qEo5ExSr8wrfFdukRnVq6TufrbYzR7ef6sX7Ppx-Stfpxmilaky0RFtJnPNS9yagVlGiQnVuSKEcWBsbllhEAOOS9LPQxCta6g4oUohaGKszG6PfzdxPDdm9Q1q9BHP0Q2VEDFWAVQDNTdgVIxpBSNbTbRtTJuGwLNrr_miU3qfX_vA3xzgGNSR-6_X_YLytZroA</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Song, Liyan</creator><creator>Meng, Yufei</creator><creator>Zhao, Tongchao</creator><creator>Liu, Lifang</creator><creator>Pan, Xiaohong</creator><creator>Huang, Binbin</creator><creator>Yao, Hongliang</creator><creator>Lin, Ran</creator><creator>Tong, Rongbiao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2740-5222</orcidid><orcidid>https://orcid.org/0000-0002-8977-3127</orcidid></search><sort><creationdate>20240102</creationdate><title>Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements</title><author>Song, Liyan ; Meng, Yufei ; Zhao, Tongchao ; Liu, Lifang ; Pan, Xiaohong ; Huang, Binbin ; Yao, Hongliang ; Lin, Ran ; Tong, Rongbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-981debbd4652f923d0a41f95c31c4033bf3110505477d54712dd80846979e2c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Amides</topic><topic>Amines</topic><topic>Azides (inorganic)</topic><topic>Benzene</topic><topic>Carbamates (tradename)</topic><topic>Carboxylic acids</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Green chemistry</topic><topic>Hofmann rearrangement</topic><topic>Industrial production</topic><topic>Intermediates</topic><topic>Isocyanates</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Potassium sulfate</topic><topic>Reagents</topic><topic>Sodium azide</topic><topic>Sodium azides</topic><topic>Stoichiometry</topic><topic>Urea</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Liyan</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Zhao, Tongchao</creatorcontrib><creatorcontrib>Liu, Lifang</creatorcontrib><creatorcontrib>Pan, Xiaohong</creatorcontrib><creatorcontrib>Huang, Binbin</creatorcontrib><creatorcontrib>Yao, Hongliang</creatorcontrib><creatorcontrib>Lin, Ran</creatorcontrib><creatorcontrib>Tong, Rongbiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Liyan</au><au>Meng, Yufei</au><au>Zhao, Tongchao</au><au>Liu, Lifang</au><au>Pan, Xiaohong</au><au>Huang, Binbin</au><au>Yao, Hongliang</au><au>Lin, Ran</au><au>Tong, Rongbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-01-02</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><spage>428</spage><epage>438</epage><pages>428-438</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The Hofmann and Curtius rearrangements have been widely used in organic synthesis and developed for the industrial production (5-100 kg) of pharmaceutically relevant amines/amides. However, the existing use of a stoichiometric organic oxidant [(diacetoxyiodo)benzene or trichloroisocyanuric acid for the Hofmann rearrangement] for amides or an activating reagent (diphenylphosphoryl azide for the Curtius rearrangement) for carboxylic acids is environmentally unfriendly and economically less attractive. Herein, we report the first green oxidation of amides and aldehydes with oxone and halide (and NaN 3 ) to generate N -halo amides and acyl azides, respectively, both of which rearrange into the common isocyanate intermediates and subsequently produce stable carbamates or ureas (the Hofmann and Curtius rearrangements) when trapped with alcohols or amines. This unified green approach is highly efficient as demonstrated by more than 30 examples for each rearrangement. Importantly, this approach generates inorganic nontoxic K 2 SO 4 as the only byproduct, which is advantageous over the existing methods that produced stoichiometric, toxic, and organic iodobenzene, and chloro-isocyanuric acid, or diphenylphosphoric acid. Notably, three urea-based drugs and eight chiral urea catalysts were efficiently synthesized from corresponding aldehydes by this green oxidative Curtius rearrangement. This green oxidative approach for the Hofmann and Curtius rearrangements is expected to find wide applications in organic synthesis and process chemistry. The oxone-halide green oxidation system is extended to the oxidation of primary amides and aromatic aldehydes (with sodium azide) to generate N -haloamide and acyl azides, respectively, for subsequent Hofmann and Curtius rearrangements.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3gc04355j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2740-5222</orcidid><orcidid>https://orcid.org/0000-0002-8977-3127</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2024-01, Vol.26 (1), p.428-438
issn 1463-9262
1463-9270
language eng
recordid cdi_proquest_journals_2908338006
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alcohols
Aldehydes
Amides
Amines
Azides (inorganic)
Benzene
Carbamates (tradename)
Carboxylic acids
Catalysts
Chemical synthesis
Green chemistry
Hofmann rearrangement
Industrial production
Intermediates
Isocyanates
Oxidants
Oxidation
Oxidizing agents
Potassium sulfate
Reagents
Sodium azide
Sodium azides
Stoichiometry
Urea
Ureas
title Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20and%20green%20oxidation%20of%20amides%20and%20aldehydes%20for%20the%20Hofmann%20and%20Curtius%20rearrangements&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Song,%20Liyan&rft.date=2024-01-02&rft.volume=26&rft.issue=1&rft.spage=428&rft.epage=438&rft.pages=428-438&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc04355j&rft_dat=%3Cproquest_cross%3E2908338006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908338006&rft_id=info:pmid/&rfr_iscdi=true