Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries
Zinc–iodine batteries are considered promising energy storage devices due to the presence of non-flammable aqueous electrolytes and intrinsically safe zinc. However, the polyiodide shuttle effect and sluggish reaction kinetics limit their electrochemical performance. Herein, in this work, we synthes...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-01, Vol.17 (1), p.323-331 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc–iodine batteries are considered promising energy storage devices due to the presence of non-flammable aqueous electrolytes and intrinsically safe zinc. However, the polyiodide shuttle effect and sluggish reaction kinetics limit their electrochemical performance. Herein, in this work, we synthesized a high-performance host material—the iodine covalent post-functionalized zeolitic imidazolate framework-90 (IL-ZIF-90) with multifunctional nitrogen—to achieve intense adsorption of iodine species. The positively charged nitrogen (N+) can induce Coulombic interactions with negatively charged iodine, while the nitrogen with a lone pair of electrons (Nle) serving as a Lewis base can interact with I2 which acts as a Lewis acid. Density functional theory (DFT) calculations are in accordance with the electrochemical characterization studies, indicating that the Nle species can accelerate the conversion between I2 and I−. Consequently, the cathode enables a capacity of 120.3 mA h g−1 at 4 A g−1, and exhibits an excellent rate capability with a capacity of 86.8 mA h g−1 at a high current density of 20 A g−1. Furthermore, the cathode also demonstrates excellent cyclic stability with a capacity retention of 91.7% at 10 A g−1 after 65 000 cycles. This work provides an effective strategy to realize high-performance Zn–I2 batteries and can be extended to other metal–iodine battery technologies. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/d3ee03297c |