L2(I;H1(Ω)d) and L2(I;L2(Ω)d) best approximation type error estimates for Galerkin solutions of transient Stokes problems

In this paper we establish best approximation type estimates for the fully discrete Galerkin solutions of transient Stokes problem in L 2 ( I ; L 2 ( Ω ) d ) and L 2 ( I ; H 1 ( Ω ) d ) norms. These estimates fill the gap in the error analysis of the transient Stokes problems and have a number of ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2024, Vol.61 (1)
Hauptverfasser: Leykekhman, Dmitriy, Vexler, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish best approximation type estimates for the fully discrete Galerkin solutions of transient Stokes problem in L 2 ( I ; L 2 ( Ω ) d ) and L 2 ( I ; H 1 ( Ω ) d ) norms. These estimates fill the gap in the error analysis of the transient Stokes problems and have a number of applications. The analysis naturally extends to inhomogeneous parabolic problems. The best type L 2 ( I ; H 1 ( Ω ) ) error estimate are new even for scalar parabolic problems.
ISSN:0008-0624
1126-5434
DOI:10.1007/s10092-023-00560-2