EvPlug: Learn a Plug-and-Play Module for Event and Image Fusion
Event cameras and RGB cameras exhibit complementary characteristics in imaging: the former possesses high dynamic range (HDR) and high temporal resolution, while the latter provides rich texture and color information. This makes the integration of event cameras into middle- and high-level RGB-based...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Event cameras and RGB cameras exhibit complementary characteristics in imaging: the former possesses high dynamic range (HDR) and high temporal resolution, while the latter provides rich texture and color information. This makes the integration of event cameras into middle- and high-level RGB-based vision tasks highly promising. However, challenges arise in multi-modal fusion, data annotation, and model architecture design. In this paper, we propose EvPlug, which learns a plug-and-play event and image fusion module from the supervision of the existing RGB-based model. The learned fusion module integrates event streams with image features in the form of a plug-in, endowing the RGB-based model to be robust to HDR and fast motion scenes while enabling high temporal resolution inference. Our method only requires unlabeled event-image pairs (no pixel-wise alignment required) and does not alter the structure or weights of the RGB-based model. We demonstrate the superiority of EvPlug in several vision tasks such as object detection, semantic segmentation, and 3D hand pose estimation |
---|---|
ISSN: | 2331-8422 |