PETDet: Proposal Enhancement for Two-Stage Fine-Grained Object Detection

Fine-grained object detection (FGOD) extends object detection with the capability of fine-grained recognition. In recent two-stage FGOD methods, the region proposal serves as a crucial link between detection and fine-grained recognition. However, current methods overlook that some proposal-related p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024-01, Vol.62, p.1-1
Hauptverfasser: Li, Wentao, Zhao, Danpei, Yuan, Bo, Gao, Yue, Shi, Zhenwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fine-grained object detection (FGOD) extends object detection with the capability of fine-grained recognition. In recent two-stage FGOD methods, the region proposal serves as a crucial link between detection and fine-grained recognition. However, current methods overlook that some proposal-related procedures inherited from general detection are not equally suitable for FGOD, limiting the multi-task learning from generation, representation, to utilization. In this paper, we present PETDet (Proposal Enhancement for Two-stage fine-grained object detection) to better handle the sub-tasks in two-stage FGOD methods. Firstly, an anchor-free Quality Oriented Proposal Network (QOPN) is proposed with dynamic label assignment and attention-based decomposition to generate high-quality oriented proposals. Additionally, we present a Bilinear Channel Fusion Network (BCFN) to extract independent and discriminative features of the proposals. Furthermore, we design a novel Adaptive Recognition Loss (ARL) which offers guidance for the R-CNN head to focus on high-quality proposals. Extensive experiments validate the effectiveness of PETDet. Quantitative analysis reveals that PETDet with ResNet50 reaches state-of-the-art performance on various FGOD datasets, including FAIR1M-v1.0 (42.96 AP), FAIR1M-v2.0 (48.81 AP), MAR20 (85.91 AP) and ShipRSImageNet (74.90 AP). The proposed method also achieves superior compatibility between accuracy and inference speed. Our code and models will be released at https://github.com/canoe-Z/PETDet.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3343453