Prediction of electronic structure and nonlinear optical properties of zinc oxide nanostructures by experimental characterization and theoretical investigation
In this study, Zinc oxide nanoparticles are synthesized by the sol-gel method. The as-synthesized nanoparticles are characterized by X-Ray Diffraction, Scanning Electronic Microscope, Transmission Electronic Microscope, Atomic Force Microscope, Fourier-Transform InfraRed and Ultraviolet-Visible spec...
Gespeichert in:
Veröffentlicht in: | Journal of electroceramics 2023-11, Vol.51 (3), p.179-191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, Zinc oxide nanoparticles are synthesized by the sol-gel method. The as-synthesized nanoparticles are characterized by X-Ray Diffraction, Scanning Electronic Microscope, Transmission Electronic Microscope, Atomic Force Microscope, Fourier-Transform InfraRed and Ultraviolet-Visible spectroscopies. In a structure-properties relationship, an important part of our work is devoted to a theoretical study by the Density Functional Theory method. The structural analysis shows that the particles have a polycrystalline hexagonal structure (P6
3
mc). The morphological characterization revealed the formation of agglomerates of Nanoparticles in the range of 20-60 nm. The optical study shows the of absorption spectrum and optical bandgap 3.31 eV. The studies of electronic structure, and the linear and nonlinear optical parameters, explain where the response of Zinc Oxide nanoparticles comes from. All obtained results confirm the multifunctionality of Zinc Oxide in its nanoscale form, whether for optoelectronics and photonic applications. |
---|---|
ISSN: | 1385-3449 1573-8663 |
DOI: | 10.1007/s10832-023-00327-9 |