Revealing the mechanism and scaling laws behind equilibrium altitudes of near-ground pitching hydrofoils
A classic lift decomposition (Von Kármán & Sears, J. Aeronaut. Sci., vol. 5, 1938, pp. 379–390) is conducted on potential flow simulations of a near-ground pitching hydrofoil. It is discovered that previously observed stable and unstable equilibrium altitudes are generated by a balance between p...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-12, Vol.978, Article A5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A classic lift decomposition (Von Kármán & Sears, J. Aeronaut. Sci., vol. 5, 1938, pp. 379–390) is conducted on potential flow simulations of a near-ground pitching hydrofoil. It is discovered that previously observed stable and unstable equilibrium altitudes are generated by a balance between positive wake-induced lift and negative quasi-steady lift while the added mass lift does not play a role. Using both simulations and experiments, detailed analyses of each lift component's near-ground behaviour provide further physical insights. When applied to three-dimensional pitching hydrofoils the lift decomposition reveals that the disappearance of equilibrium altitudes for ${A{\kern-4pt}R}\ {\rm (aspect\ ratio)} |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2023.1004 |